
Common Support Issues
and

How to Troubleshoot Them

Michael Hackett and Vikhyat Umrao
PSMEs
Red Hat, Inc.

What are we going to cover today?

● Slow/Blocked Requests
○ What is a slow request?
○ Possible causes
○ Types of Slow Requests
○ Common Troubleshooting Techniques

● Flapping OSD's when RGW buckets have millions of objects
○ Where to start
○ Possible causes
○ Temporary solutions
○ Permanent Solutions

The Dreaded Slow Request!!!

● What is a Slow request?
○ When Ceph detects a request that has taken

too long to process it will get flagged as a
slow request.

● A Slow request will log against an OSD when it
has been unable to service the request in it’s
op_queue queue for 30 seconds or more (default).

○ Configurable via osd_op_complaint_time.
Default is 30 seconds.

● Will be accompanied by blocked requests.
● Changing the osd_op_complaint_time is not

recommended as can lead to false reporting
issues.

Possible Causes
With the understanding of what a slow request is, what can cause these to occur?

● Problems with underlying hardware such as disk drives, controllers, hosts
(kernel or configuration), racks or networking equipment

● System load
● Improper configurables set on OSD’s (op_threads set to high)
● Improper balance in the cluster leading to ‘hot’ OSD’s
● Cluster configuration issues (too many/not enough PG’s per OSD)
● Cluster under backfill/recovery
● Deep scrubbing
● Compaction or splitting is occurring on the OSD node.

Types of Common Slow Requests
What types of Slow Requests can you expect to see?

● Waiting for rw locks: The op is blocked because there’s an in-progress op on the
object in question. This op needs to be completed before we can obtain a lock.

● Waiting for sub ops: This is triggered when the op is already being processed
and we are awaiting replica OSD to commit the op, any local events such as
committing to disk will move the op out of this state. Most commonly points to
the OSD in question as being over utilized.

● No flag points reached: The output when the op has not even been queued for
the PG yet. Tends to mean there is a large backup or lack of CPU time.

● Waiting for degraded object: This means the OSD knows an object exists but
does not have it locally as recovery is still in progress.

Common Troubleshooting Techniques
How to determine what cause of my issue is?

● Verify the cluster status, that all OSD’s are UP/IN state and that all PG’s are active+clean
state (ceph -s or ceph health detail).

● Determine if OSD’s logging the slow requests share a common piece of HW. A log
parsing tool such as the ceph log parser can be used to determine ratio of slow requests
logging per host or rack crush leaf.

● Verify disk performance on OSD logging slow requests by utilizing a Linux utility such as
iostat. Look for high utilization percentage and high r_wait and await values.

● Verify network performance/throughput or any errors seen on NICs or networking
equipment. Linux utilities such as netstat and iperf can be used.

● If using Jumbo Frames verify MTU size matches throughout the environment (ifconfig and
ping) .

● Determine if deep-scrubbing, compaction or splitting was occuring at the time of the slow
requests. The OSD logs can be reviewed for these events and correlated to the slow
requests.

The Ceph log parser
Where do I get this handy tool?

https://github.com/linuxkidd/ceph-log-parsers

Example output of ceph log parser in spreadsheet:

https://github.com/linuxkidd/ceph-log-parsers

Flapping OSD's

● OSD’s use the cluster network to send
heartbeats to each-other to indicate
status (UP/IN). If an OSD is unable to
receive this heartbeat a peer OSD will flag
as down to the monitor.

● By default, two Ceph OSD Daemons from
different hosts must report to the Ceph
Monitors that another Ceph OSD Daemon
is down before the Ceph Monitors
acknowledge that the reported Ceph OSD
Daemon is down. This is controlled by this
tunable - mon_osd_min_down_reporters.

Flapping OSD's when RGW buckets have millions of objects

● Where to start
○ Identifying type of workload.

■ Millions of objects it means definitely loads of PUTs but if in
parallel good amount of DELETEs this is a workload which can
cause this issue.

○ Check if bucket index sharding is used or not?
■ radosgw-admin metadata get

bucket.instance:<bucket-name>:<bucket-id> | grep num_shards
■ If value comes as 0 it means no bucket index sharding.
■ If this has some value then need to verify if it is configured as

recommended value 100K objects/shard.

○ Check if bucket index RADOS pool is backed by SSD or NVME OSD’s.

Flapping OSD's when RGW buckets have millions of objects

● Possible causes
○ The first issue here is when RGW buckets have millions of objects their

bucket index shard RADOS objects become very large with high
number OMAP keys stored in leveldb. Then operations like deep-scrub,
bucket index listing etc takes a lot of time to complete and this triggers
OSD's to flap. If sharding is not used this issue become worse because
then only one RADOS index objects will be holding all the OMAP keys.

○ The second issue is when you have good amount of DELETEs it causes
loads of stale data in OMAP and this triggers leveldb compaction all the
time which is single threaded and non optimal with this kind of workload
and causes osd_op_threads to suicide because it is always compacting
hence OSD’s starts flapping.

Flapping OSD's when RGW buckets have millions of objects

● Possible causes contd ...
○ OMAP backend is leveldb in jewel and older clusters. Any luminous

clusters which were upgraded from older releases have leveldb as
OMAP backend.

○ All new luminous clusters have default OMAP backend as rocksdb
which is great because rocksdb has multithreaded compaction and in
Ceph we use 8 compaction thread by default and many other enhanced
features as compare to leveldb.

Flapping OSD's when RGW buckets have millions of objects

● Temporary solutions
○ The first temporary action should be setting nodeep-scrub flag either

global in the cluster with ceph osd set nodeep-scrub or only to the RGW
index pool with - ceph osd pool set <pool-name> nodeep-scrub 1.

○ Then the second temporary step could be taken if OSD's are not
stopping from hitting suicide timeout. Increase the OSD op threads
normal timeout and suicide timeout values and if filestore op threads are
also hitting timeout then increase normal and suicide timeout for
filestore op threads.

Flapping OSD's when RGW buckets have millions of objects

● Temporary solutions contd ...
○ Add these options in [osd.id] section or in [osd] section to make them

permanent till the time troubleshooting of this issue is going on and use
ceph tell injectargs command to inject them at run time.

 osd_op_thread_timeout = 90 #default is 15
 osd_op_thread_suicide_timeout = 2000 #default is 150

 If filestore op threads are hitting timeout
 filestore_op_thread_timeout = 180 #default is 60
 filestore_op_thread_suicide_timeout = 2000 #default is 180

 Same can be done for recovery thread also.
 osd_recovery_thread_timeout = 120 #default is 30
 osd_recovery_thread_suicide_timeout = 2000 #default is 300

Flapping OSD's when RGW buckets have millions of objects

● Temporary solutions contd ...
○ The third temporary step could be taken if OSD's have very large OMAP

directories you can verify it with command: du -sh
/var/lib/ceph/osd/ceph-$id/current/omap, then do manual leveldb
compaction for OSD's.

■ ceph tell osd.$id compact or
■ ceph daemon osd.$id compact or
■ Add leveldb_compact_on_mount = true in [osd.$id] or [osd] section

and restart the OSD.
■ This makes sure that it compacts the leveldb and then bring the

OSD back up/in which really helps.

Flapping OSD's when RGW buckets have millions of objects

● Permanent Solutions
○ Calculate the bucket index shard RADOS object size

■ Count the OMAP keys in index shard object
● rados -p <rgw index pool name> listomapkeys

<index-shard-object-name> | wc -l
■ Each OMAP key is of 200 bytes for getting the size of object

● <count from above command> * 200 = <value in bytes>

○ If the index shard object is very big like above 20 MB consider resharding
because shard count is not set as per recommendation or sharding is not
used at all.

■ radosgw-admin bucket reshard is the command more details can be
found in upstream documentation. This is offline reshard tool.

■ Because of these issues now Luminous has dynamic resharding.
● http://docs.ceph.com/docs/master/radosgw/dynamicresharding

http://docs.ceph.com/docs/master/radosgw/dynamicresharding

Flapping OSD's when RGW buckets have millions of objects

● Permanent Solutions contd ...
○ If RGW index pool is not backed by SSD or NVME OSD’s and OSD’s are

running above 80% disk util(Disk bound) during leveldb compaction
consider migrating Index pool to new CRUSH ruleset which is backed by
SSD or NVME SSD’s.

○ If RGW index pool OSD’s are always using above 100% CPU(CPU bound)
during leveldb compaction consider converting omap backend to rocksdb
from leveldb.

○ Jewel still do not support omap backend as rocksdb - this jewel pull
request 18010 will bring the rocksdb support in jewel.

https://github.com/ceph/ceph/pull/18010
https://github.com/ceph/ceph/pull/18010

Flapping OSD's when RGW buckets have millions of objects

● Permanent Solutions contd ...
○ After rocksdb support in jewel and luminous already has it these

commands can be used to convert omap bakend to rocksdb from leveldb:
■ Stop the OSD
■ mv /var/lib/ceph/osd/ceph-<id>/current/omap

/var/lib/ceph/osd/ceph-<id>/omap.orig
■ ulimit -n 65535
■ ceph-kvstore-tool leveldb /var/lib/ceph/osd/ceph-<id>/omap.orig

store-copy /var/lib/ceph/osd/ceph-<id>/current/omap 10000 rocksdb
■ ceph-osdomap-tool --omap-path

/var/lib/ceph/osd/ceph-<id>/current/omap --command check
■ sed -i s/leveldb/rocksdb/g /var/lib/ceph/osd/ceph-<id>/superblock
■ chown ceph.ceph /var/lib/ceph/osd/ceph-<id>/current/omap -R
■ cd /var/lib/ceph/osd/ceph-<id>; rm -rf omap.orig
■ Start the OSD

○ If you do not want to go with above steps then you can rebuild the OSD
with filestore_omap_backend = "rocksdb".

Flapping OSD's when RGW buckets have millions of objects

● In summary:
○ Have RGW index pool backed by SSD or NVME.

○ Have proper bucket index shard count set to a nice value from starting
considering future growth.

○ Have RGW index pool OSD’s using rocksdb with 8 compaction threads,
rocksdb compression disabled and rocksdb_cache_size tuned properly as
per your workload starting point 1G and can be increased more.

○ If you still see index pool OSD’s flapping during deep-scrub you can keep
nodeep-scrub flag set on the index pool and this luminous pull request
luminous: osd: deep-scrub preemption will fix this issue and you can unset
nodeep-scrub after upgrading to fixed luminous version.

https://github.com/ceph/ceph/pull/20033

Shameless book plug!

Packt Publishing Site

Amazon Link to book

https://www.packtpub.com/virtualization-and-cloud/ceph-cookbook-second-edition
https://www.amazon.com/Ceph-Cookbook-Practical-recipes-implement/dp/1788391063/ref=sr_1_2?s=books&ie=UTF8&qid=1520546488&sr=1-2&keywords=ceph+cookbook+second+edition&dpID=41ZqUuL0NuL&preST=_SX218_BO1,204,203,200_QL40_&dpSrc=srch

Thank you.

