Recent Advances on Object Detection in MSRA

Jifeng Dai, Han Hu, Lu Yuan and Yichen Wei

Visual Computing Group, Microsoft Research Asia

Outline

- R-FCN and its extensions
- Deformable ConvNets and its extensions
- Video object detection
- Summary

Highlights

- Region-based, fully-convolutional networks for object detection
- Fast and accurate
- Motivate many extensions

Code is available at https://github.com/daijifeng001/R-FCN

ن المعادية المعادية

Region-based Object Detectors

• Methodologies of region-based detectors using ResNet-101

	R-CNN	Faster R-CNN	R-FCN [ours]
depth of shared conv subnetwork	0	91	101
depth of RoI-wise subnetwork	101	10	0

Respecting Translation Variance for Detection

- Increasing translation invariance for image classification
 - Shift of an object inside an image should be indiscriminative
 - Leading deep (fully) convolutional architectures are translation-invariant
- Respecting translation variance for object detection
 - Responses should reflect how candidate boxes overlap with objects
 - A considerable deep per-ROI subnet in Faster-RCNN using ResNet-101

image classification

object detection

R-FCN

- Key idea of R-FCN for object detection
 - Position-sensitive score maps (kxk, e.g., k = 3)
 - Position-sensitive Rol pooling

R-FCN

• Spatial information is encoded by position-sensitive score maps

position-sensitive score maps

R-FCN

- Key properties of **R-FCN**
 - Negligible per-RoI computational cost (in both training/inference)
 - The whole architecture is end-to-end trainable

Experiments

• Comparisons between Faster R-CNN and R-FCN using ResNet-101

		depth of per-RoI subnetwork	training w/ OHEM?	train time (sec/img)	test time (sec/img)	mAP (%) on VOC07
	Faster R-CNN R-FCN	10 0		1.2 0.45	0.42 0.17	76.4 76.6
-	Faster R-CNN	10	√ (300 RoIs)	1.5	0.42	79.3
	R-FCN	0	√ (300 RoIs)	0.45	0.17	79.5
	Faster R-CNN	10	✓ (2000 RoIs)	2.9	0.42	N/A
	R-FCN	0	✓ (2000 RoIs)	0.46	0.17	79.3

R-FCN extensions: fully convolutional instance segmentation

- First pure fully convolutional solution for instance segmentation
 - Accurate: no feature warping/resizing or fc layers
 - Fast: negligible per-region computation

Previous best & fastest:

COCO Segmentation Challenge 2016

- MSRA won 1st place back-to-back
 - 11% relatively better than 2016 2nd (Google)
 - 33% relatively better than 2015 1st (MSRA)
 - Excellent on box: 2nd place in detection if public

R-FCN extensions: Light-head R-CNN

- PS scores-> PS features, followed by ultra-light detection head
 - Fast and accurate
 - Adopted in products

R-FCN extensions: R-FCN-3000 at 30fps

• Decoupled classification and localization for scaling up

SataFun.
「
たい
「
たい
」

Outline

- R-FCN and its extensions
- Deformable ConvNets and its extensions
- Video object detection
- Summary

Highlights

- Enabling effective modeling of spatial transformation in ConvNets
- No additional supervision for learning spatial transformation
- Significant accuracy improvements on sophisticated vision tasks

Code is available at https://github.com/msracver/Deformable-ConvNets

Modeling Spatial Transformations

• A long standing problem in computer vision Deformation: Scale:

Viewpoint variation:

Intra-class variation:

Traditional Approaches

• 1) To build training datasets with sufficient desired variations

• 2) To use transformation-invariant features and algorithms

Scale Invariant Feature Transform (SIFT) Deformable Part-based Model (DPM)

• Drawbacks: geometric transformations are assumed fixed and known, hand-crafted design of invariant features and algorithms 👸 ジンataFun. ||T 杰臘) 淳

Spatial Transformations in CNNs

- Regular CNNs are inherently limited to model large unknown transformations
 - The limitation originates from the fixed geometric structures of CNN modules

Spatial Transformer Networks

- Learning a global, parametric transformation on feature maps
 - Prefixed transformation family, infeasible for complex vision tasks

Deformable Convolution

- Local, dense, non-parametric transformation
 - Learning to deform the sampling locations in the convolution/RoI Pooling modules

○ SataFun. 「「本語」

Deformable Convolution

Regular convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

Deformable convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

where $\Delta \mathbf{p}_n$ is generated by a sibling branch of regular convolution

Deformable Rol Pooling

input feature map output roi feature map deformable Rol Pooling

Regular Rol pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p}\in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p})/n_{ij}$$

Deformable Rol pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p}\in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p} + \Delta \mathbf{p}_{ij}) / n_{ij}$$

where $\Delta \mathbf{p}_{ij}$ is generated by a sibling fc branch

Ũ AICUG ◇DataFun. ∏太鵬诗

Deformable ConvNets

- Same input & output as the plain versions
 - Regular convolution -> deformable convolution
 - Regular RoI pooling -> deformable RoI pooling
- End-to-end trainable without additional supervision

Sampling Locations of Deformable Convolution

(a) standard convolution

(b) deformable convolution

Part Offsets in Deformable Rol Pooling

Object Detection on COCO (Test-dev)

- Deformable ConvNets v.s. regular ConvNets
 - Noticeable improvements for varies baselines
 - Marginal parameter & computation overhead

OataFun. ∏☆‱i芽

COCO Detection & Segmentation Challenge 2017

- Focus shifted from ImageNet to COCO in 2017
- Top-4 teams are quite close, surpassing others clearly

COCO Detection & Segmentation Challenge 2017

- Few tricks and hacks are adopted by MSRA and FAIR team
- Our accuracy is on par with FAIR team, at much smaller model size
- Deformable ConvNets are also adopted by other teams

Team	BBox	Segmentation	Tricks & Hacks	Model Ensembled	Utilize of Deformable CNNs
Megvii (Face++)	1 st	2 nd	Many	Unknown	Unknown
Ucenter (SenseTime)	2 nd	1 st	Many	Unknown	Yes
MSRA	3 rd	4 th	Few	<u>6</u>	Yes
FAIR	4 th	3 rd	Few	<u>30</u>	No

Deformable ConvNets Extensions I

Deformable GANs

 Deformable volume network for flow estimation

(c) Ground truth optical flow (d) Wat

flow (d) Warped second image

(e) Warped second image sub- (f) Warped second image subtracted by the first image tracted by the second image

[Lu et al. Arxiv Tech Report, 2018.]

Siarohin et al. Arxiv Tech Report, 2017.]

Deformable ConvNets Extensions II

• Fully learnable region feature extraction

OataFun. ∏☆‱i芽

• Deformed regular grid, offset learning -> Free-form shape, attention weight learning

Outline

- R-FCN and its extensions
- Deformable ConvNets and its extensions
- Video object detection
- Summary

Per-frame recognition in video is problematic

High Computational Cost

Infeasible for practical needs

Task	Image Size	ResNet-50	ResNet-101
Detection	1000x600	6.27 fps	4.05 fps
Segmentation	2048x1024	2.24 fps	1.52 fps

FPS: frames per second (NVIDIA K40 and Intel Core i7-4790)

Ŭ ⇒DataFun. ∏杰酬谚

Deteriorated Frame Appearance Poor feature and recognition accuracy

Key idea

• Flow-guided feature propagation & aggregation

key frame

current frame

current frame feature maps

flow field

warped from key frame to current frame

Powering the winner of ImageNet VID 2017

Team name	Entry description	Number of object categories won	mean AP			
IC&USYD	provide_submission3	15	0.817265			
IC&USYD	provide_submission1	6	0.808847			
IC&USYD	provide_submission2	4	0.818309			
NUS-Qihoo- UIUC_DPNs (VID)	no_extra + seq + mca + mcs	3	0.757772	<u></u>	<u>.</u>	-
NUS-Qihoo- UIUC_DPNs (VID)	no_extra + seq + vcm + mcs	1	0.757853		Jiankang Deng(1), Yuxiang Zhou(1), Baosheng Yu(2), Zhe	
NUS-Qihoo- UIUC_DPNs (VID)	Faster RCNN + Video Context	1	0.748493	IC&USYD	Chen(2), Stefanos Zafeiriou(1), Dacheng Tao(2), (1)Imperial	9
THU-CAS	merge-new	0	0.730498		College London,	
THU-CAS	old-new	0	0.728707		(2)University of	
THU-CAS	new-new	0	0.691423		Sydney	
GoerVision	Deformable R-FCN single model+ResNet101	0	0.669631			
GoerVision	Ensemble 2 model, use ResNet101 as foundamental classification network and deformable R-FCN to detect video frames, multi-scale testing	0	0.665693	-		
GoerVision	o train the video objectWe use the ResNet101 and Deformable R-FCN for the detection.	0	0.655686			
GoerVision	Using R-FCN to detect video object, multi scale testing applied.	0	0.646965			
FACEALL_BUPT	SSD based on Resnet101 networks	0	0.195754			

[top]

Towards High Performance Video Object Detection for Mobiles

- Accurate, real-time video object detection on mobiles for the first time
- An order faster than previous fastest object detectors with on par accuracy

Outline

- R-FCN and its extensions
- Deformable ConvNets and its extensions
- Video object detection
- Summary

Summary

- General object detection is still an open, unsolved, fundamental vision problem
 - Recognition of objects with large appearance variations
 - Low recognition latency on mobile devices
 - Panoramic scene understanding
- Careful investigation and prototyping is necessary in application in products