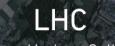
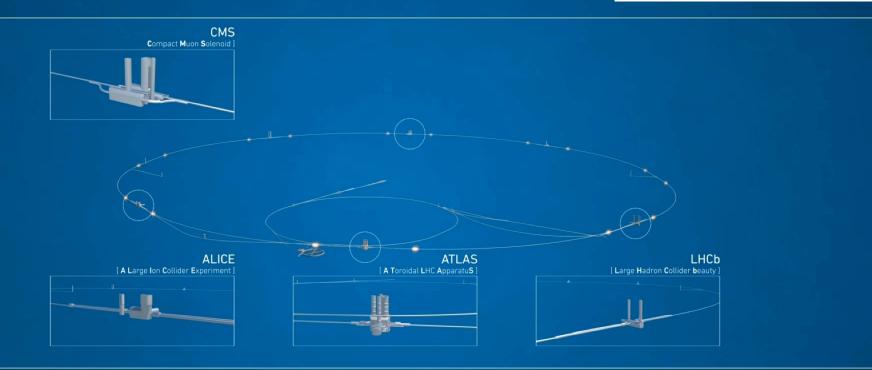


Ceph for Big Science


Dan van der Ster, CERN IT Cephalocon APAC 2018 23 March 2018 | Beijing

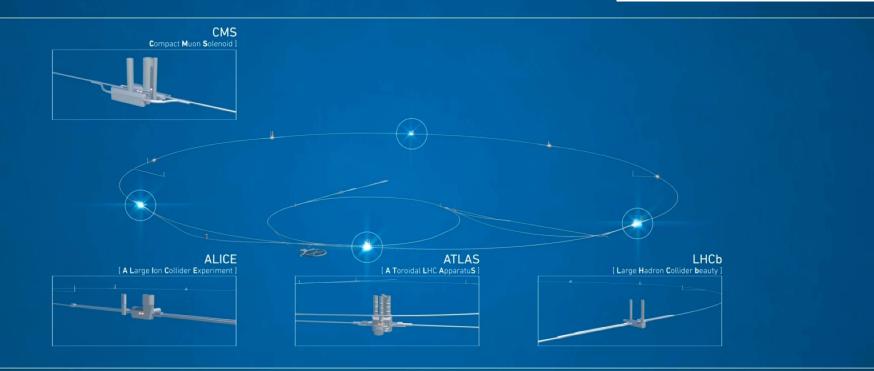
CERN

[Large Hadron Collider]

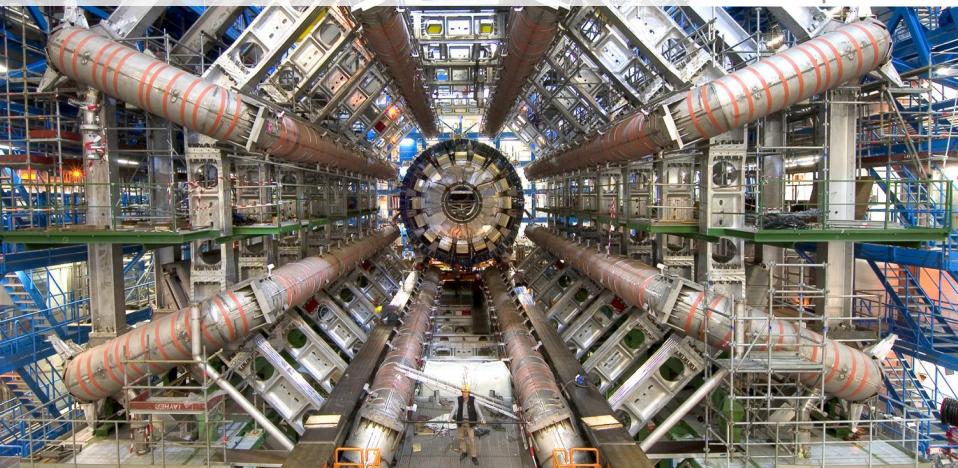


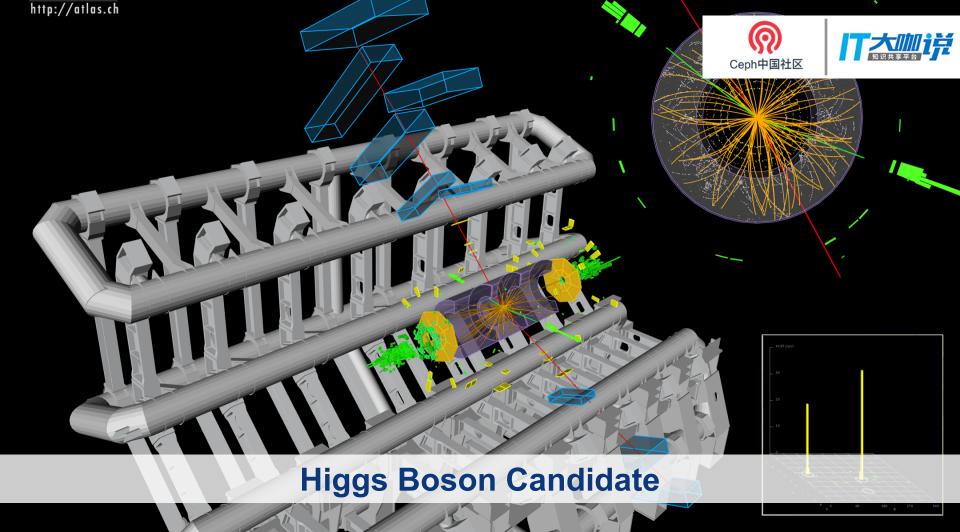
LHCb

ATLAS



~30MHz interactions filtered to ~1kHz recorded collisions




~30MHz interactions filtered to ~1kHz recorded collisions

ATLAS Detector, 100m undergrou

300 petabytes storage, 230 000 CPU

Worldwide LHC Compute Gric

Worldwide LHC Compute Gric

Beijing IHEP WLCG Centre

44

Ceph at CERN: Yesterday & Today

cepr

openstac

Proposal for a Petabyte-Scale Generic Stor

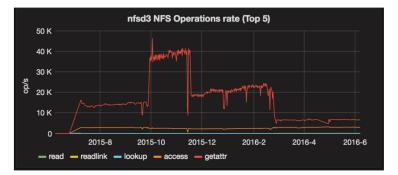
Dan van der Ster, Arne Wiebalck / February 2013

Executive Summary

We are investigating a consolidated storage backend to satisfy the medium-term needs related to (a) block storage for Agile Infrastructure VMs and (b) backend block storage for AFS and NFS frontends. Ceph is an appealing solution because of its fault-tolerance-first design (no SPOF, decentralized file lookup, basic storage unit is an object store with replication/striping/self-healing), and feature-rich access methods (S3/SWIFT object storage, iSCSI/KVM/QEMU block storage, POSIX/"NFS-style" file access). We therefore propose a proof-of-concept project to deploy a 1 PB Ceph evaluation cluster.

- History
- March 2013: 300TB proof of concept
- Dec 2013: 3PB in prod for RBD
- 2014-15: EC, radosstriper, radosfs
- 2016: 3PB to 6PB, no downtime
- 2017: 8 prod clusters

			@ /7	
CERN Ceph Clusters		Size	ph中国社区 Version	
OpenStack Cinder/Glance	Production	5.5PB	jewel	
Satellite data cer	ntre (1000km away)	0.4PB	luminous	
CephFS (HPC+Manila)	Production	0.8PB	luminous	
M	anila testing cluster	0.4PB	luminous	
Ну	perconverged HPC	0.4PB	luminous	
CASTOR/XRootD	Production	4.2PB	luminous	
C	CERN Tape Archive	0.8PB	luminous	
S3+SWIFT	Production	0.9PB	luminous	


CephFS

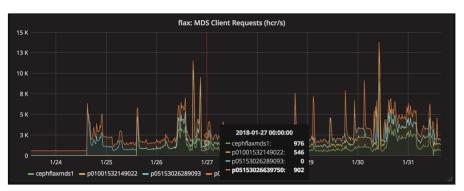
CephFS: Filer Evolution

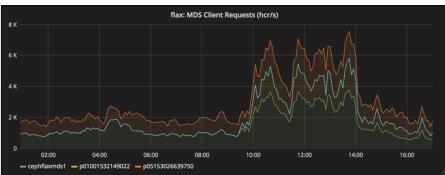
- Virtual NFS filers are stable and perform well:
 - nfsd, ZFS, zrep, OpenStack VMs, Cinder/RBD
 - We have ~60TB on ~30 servers
- High performance, but not scalable:
 - Quota management tedious

CERN

- Labour-intensive to create new filers
- Can't scale performance horizontally

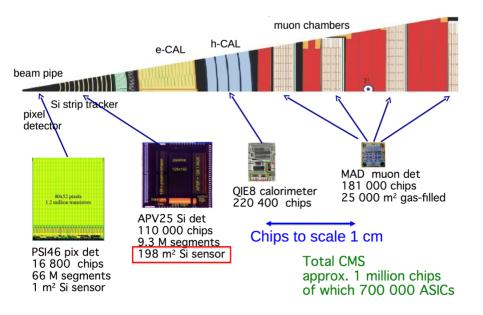
CephFS: Filer Evolution


- OpenStack Manila (with CephFS) has most of the needed features:
 - Multi-tenant with security isolation + quotas
 - Easy self-service share provisioning
 - Scalable performance (add more MDSs or OSDs as needed)
- Successful testing with preproduction users since mid-2017.
 - Single MDS was seen as a bottleneck. Luminous has stable multi-MDS.
- Manila + CephFS now in production:
 - One user already asked for 2000 shares
 - Also using for Kubernetes: we are working on a new CSI CephFS plugin
 - Really need kernel quota support!



Multi-MDS in Production

- ~20 tenants on our pre-prod environment for several months
 - 2 active MDSs since luminous
- Enabled multi-MDS on our production cluster on Jan 24
- Currently have 3 active MDSs
 - default balancer and pinning



HPC on CephFS?

- CERN is mostly a high *throughput* computing lab:
 - File-based parallelism
- Several smaller HPC usecases exist within our lab:
 - Beams, plasma, CFD, QCD, ASICs
 - Need full POSIX, consistency, parallel IO

"Software Defined HPC"

- CERN's approach is to build HPC clusters with commodity parts: "Software Defined HPC"
 - Compute side is solved with HTCondor & SLURM
 - Typical HPC storage is not very attractive (missing expertise + budget)
- 200-300 HPC nodes accessing ~1PB CephFS since mid-2016:
 - Manila + HPC use-cases on the same clusters. HPC is just another user.
 - Quite stable but not super high performance

- Storage benchmark announced by John Bent on ceph-users ML (from SuperComputing 2017)
- « goal is to improve parallel file systems by ensuring that sites publish results of both "hero" and "anti-hero" runs and by sharing the tuning and configuration »
- We have just started testing on our CephFS clusters:
 - IOR throughput tests, mdtest + find metadata test
 - Easy/hard mode for shared/unique file tests

IO-500 First Look...No tuni

Test	Result
ior_easy_write	2.595 GB/s
ior_hard_write	0.761 GB/s
ior_easy_read	4.951 GB/s
ior_hard_read	0.944 GB/s

Luminous v12.2.4 -- Tested March 2018

411 OSDs: 800TB SSDs, 2 per server OSDs running on same HW as clients

2 active MDSs running on VMs

Test	Result
mdtest_easy_write	1.774 kiops
mdtest_hard_write	1.512 kiops
find	50.00 kiops
mdtest_easy_stat	8.722 kiops
mdtest_hard_stat	7.076 kiops
mdtest_easy_delete	0.747 kiops
mdtest_hard_read	2.521 kiops
mdtest_hard_delete	1.351 kiops

[SCORE] Bandwidth 1.74 GB/s : IOPS 3.47 kiops : TOTAL 2.46

Ξ.

=

IO-500 First Look...No tuni

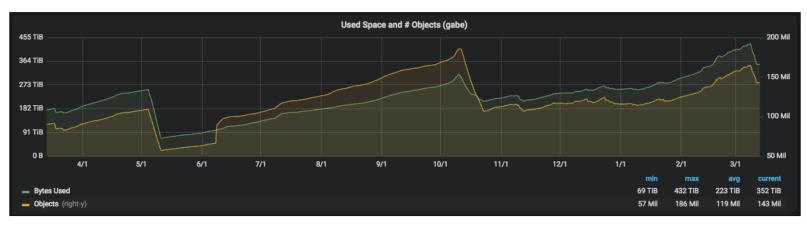
Test		Result		Result						
	ior_easy_write 2.595 GB/s mdte		mdtest	mdtest_easy_write		1.774 kiops				
i # informa			mation			io500		- S		
	ior_		system	institution	filesystem	client nodes	score	bw	md	0S
								GiB/s	kIOP/s	
Luminou	S V	8	EMSL Cascade	PNNL	Lustre	126	11.17	4.88	25.57	
411 OSD OSD		9	Serrano	SNL	Spectrum Scale	16	4.25	0.65	27.98	

Ξ.

2 active MDSs running on VMs

[SCORE] Bandwidth 1.74 GB/s : IOPS 3.47 kiops : TOTAL 2.46

=


RGW

26

S3 @ CERN

- Ceph luminous cluster with VM gateways. Single region.
 - 4+2 erasure coding. Physics data for small objects, volunteer computing, some backups.
 - Pre-signed URLs and object expiration working well.
- HAProxy is very useful:
 - High-availability & mapping special buckets to dedicated gateways

CERN

RBD

RBD: Ceph + OpenStack

Cinder Volume Types

Volume Type	Size (TB)	Count
standard	871	4,758
io1	440	608
cp1	97	118
cpio1	269	107
wig-cp1	26	19
wig-cpio1	106	13
io-test10k	20	1
Totals:	1,811	5,624

RBD @ CERN

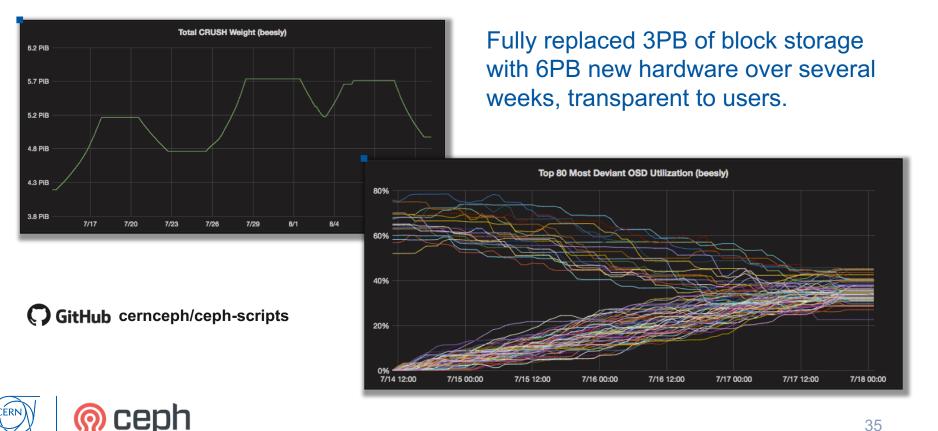
- OpenStack Cinder + Glance use-cases continue to be highly reliable:
 - QoS via IOPS/BW throttles is essential.
 - Spectre/Meltdown reboots updated all clients to luminous!
- Ongoing work:
 - Recently finished an expanded *rbd trash* feature
 - Just starting work on a persistent cache for librbd
 - CERN Openlab collaboration with Rackspace!
 - Writing a backup driver for glance (RBD to S3)

Hyperconverged Ceph/Clo

- Experimenting with co-located ceph-osd on HVs and HPC:
 - New cluster with 384 SSDs on HPC nodes
- Minor issues related to server isolation:
 - cgroups or NUMA pinning are options but not yet used.
- Issues are related to our operations culture:
 - We (Ceph team) don't own the servers need to co-operate with the cloud/HPC teams.
 - E.g. When is it ok to reboot a node? how to drain a node? Software upgrade procedures.

User Feedback: From Jewel to Luminous

Jewel to Luminous Upgrad



- In general upgrades went well with no big problems.
- New/replaced OSDs are BlueStore (ceph-volume lvm)
 - Preparing a FileStore conversion script for our infrastructure
- ceph-mgr balancer is very interesting:
 - Actively testing the crush-compat mode
 - Python module can be patched in place for quick fixes

How to replace many OSDs?

Current Challenges

- RBD / OpenStack Cinder:
 - Ops: how to identify active volumes?
 - "rbd top"
 - Performance: µs latencies and kHz IOPS.
 - Need persistent SSD caches.
 - On the wire encryption, client-side volume encryption
 - OpenStack: volume type / availability zone coupling for hyper-converged clusters

Current Challenges

- CephFS HPC:
 - HPC: parallel MPI I/O and single-MDS metadata perf (IO-500!)
 - Copying data across /cephfs: need "rsync --ceph"
- CephFS general use-case:
 - Scaling to 10,000 (or 100,000!) clients:
 - client throttles, tools to block/disconnect noisy users/clients.
 - Need "ceph client top"
 - native Kerberos (without NFS gateway), group accounting and quotas
 - HA CIFS and NFS gateways for non-Linux clients
 - How to backup a 10 billion file CephFS?
 - e.g. how about binary diff between snaps, similar to ZFS send/receive?

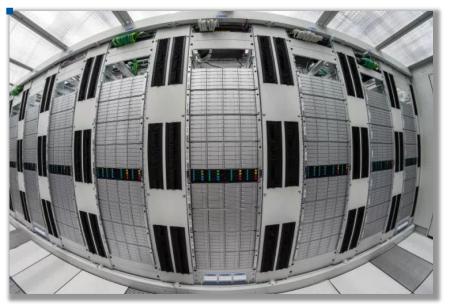
Current Challenges

- RADOS:
 - How to phase in new features on old clusters
 - e.g. we have 3PB of RBD data with *hammer* tunables
 - Pool-level object backup (convert from replicated to EC, copy to non-Ceph)
 - rados export the diff between two pool snaphots?
- Areas we cannot use Ceph yet:
 - Storage for large enterprise databases (are we close?)
 - Large scale batch processing
 - Single filesystems spanning multiple sites
 - HSM use-cases (CephFS with tape backend?, Glacier for S3?)

Future...

39

- Run-2 (2015-18):
 ~50-80PB/year
- Run-3 (2020-23):
 ~150PB/year
- Run-4: ~600PB/year?!


"Data Lakes" - globally distributed, flexible placement, ubiquitous access

Ceph Bigbang Scale Testin

- Bigbang scale tests mutually benefit CERN & Ceph project
- Bigbang I: 30PB, 7200 OSDs, Ceph hammer. Several osdmap limitations
- Bigbang II: Similar size, Ceph jewel. Scalability limited by OSD/MON messaging. Motivated ceph-mgr
- Bigbang III: 65PB, 10800 OSDs

https://ceph.com/community/new-luminous-scalability/

Thanks...

Thanks to my CERN Colle:

- Ceph team at CERN
 - Hervé Rousseau, Teo Mouratidis, Roberto Valverde, Paul Musset, Julien Collet
 - Massimo Lamanna / Alberto Pace (Storage Group Leadership)
 - Andreas-Joachim Peters (Intel EC)
 - Sebastien Ponce (radosstriper)
- OpenStack & Containers teams at CERN
 - Tim Bell, Jan van Eldik, Arne Wiebalck (also co-initiator of Ceph at CERN), Belmiro Moreira, Ricardo Rocha, Jose Castro Leon
- HPC team at CERN
 - Nils Hoimyr, Carolina Lindqvist, Pablo Llopis

home.cern