
DPDK Summit China 2017

Embedded Network Architecture
Optimization Based on DPDK

Lin Hao
T1 Networks

 Our History — What is an embedded network device

 Challenge to us — Requirements for device today

 Our solution — T1 unique embedded network architecture（T1-System）

 Model of “embedded network architecture”

 History of T1-system

 Business layer of T1-system

 An optimization case —— dual-socket system

 T1-system as a NFV

Agenda

Our History
T1 Networks —

“Professional application delivery & High-performance fusion of network security products”

Harbor Networks Corp.

Product: Router
HW: Freescale + Intel NP
SW: vxworks + uCode

Venustech Corp.

Product: UTM
HW: Cavium OCTEON
SW: cvm excutiveSDK

T1 networks Corp.

Product: ADC
HW: X86
SW: Linux+Netmap

Product: NGFW
HW: X86
SW: Linux+DPDK

2000 2006 2013 2015

Challenge to our system

1. Falling cost on network bandwidth

2.Hardware is varied and iteration fast

3.Features expansion

10/100/1000 Mbps
10Gbps

40Gbps
100Gbps

Atom

Core
Xeon I350 82599

X552 XL710
RRC

Policy
Anti-virus IPSVPN QOS Compress

Situation require for our system

Performance！

Compatibility！

Scalability！

Model of ENA

HW

SW

I350 XL710 …

Mbuf

Hardware adaptation layer

Traffic distribute layer

Business Layer

HW Drivers

Packets IO

Ring

Mem

Timer

Model of “Embed Network Architecture”

82599

Network traffic System components

Be responsible for “Compatibility”

Be responsible for “Performance”

Be responsible for “Scalability”

History of “T1-system”

 1st Generation —— “kernel driver based” system

 2nd Generation —— Muti-Core MIPS64

 3rd Generation —— “Dispatcher-application” system

 4th Generation —— “Balanced-dispatcher” DPDK-equipped system

 5th Generation —— “DPDK+FPGA” system

 Why we need DPDK？How to use DPDK？

1st Gen—Kernel driver based

Driver

Low-level traffic forward

High-level Application

HW

Kernel

User-
Space

NIC

System call

1

3

2

Network traffic Network traffic Network traffic

3

Advantage：
Easy to get……

Problem:

1 Bottleneck of Linux IRQ

2 Difficult to develop and optimize

Inefficient system call

2rd Gen—Muti-Core MIPS64

Data_plane:
Non-OS app code

Ctrl_plane:
Linux OS

0

1

Packet Schedule Unit

2 3 4 5 …

HW

SW

Advantage：

Excellent throughput performance

Problem:

1 Performance decline on complex feature

2 Hard to develop

Cores

3rd Gen—Dispatcher-Application

A
PP-C

A
PP-C

A
PP-D

A
PP-D

A
PP-D

A
PP-D

A
PP-D

Disp Disp Disp Disp

A
PP-D

Core group 1
ctrl_plane

Core group 2:
data_plane
with netmap

Core group 3:
Dispatcher
with netmap

NIC RSS
HW

Kernel with netmap patched driver

User-space

1

2

3

1 RSS-binded packets
handle

2 5-tuple hash dispatcher

3 control-plane Vs data-
plane

3rd Gen—Dispatcher-Application

Advantage：Reduced Muti-core competition

APP1 APP2 APP3 APP4

SHARED FLOW TABLE

A
B
C
D

Dispatchers

APP1 APP2 APP3 APP4

A
B
C
D

SEPARATED FLOW TABLE

without Dispatcher with Dispatcher

3rd Gen—Dispatcher-Application

Problem：Bottleneck in different situation

Dispatcher

App App App

Heavy traffic, low complexity

Bottleneck
Dispatcher

App App App

Light traffic, high complexity

Inefficient

4th Gen—DPDK-equipped system

A
PP-C

A
PP-C

Core group :
ctrl_plane

DISP

APP-D

DPDK

Single core
with DPDK

DISP

APP-D

DPDK

Single core
with DPDK

DISP

APP-D

DPDK

Single core
with DPDK

NIC RSS

…

“balance-dispatcher”
system.

Two improvement：
1

2

1 DPDK-equipped.

2

5th Gen—Maybe in the future

A
PP-C

A
PP-C

Core group :
ctrl_plane

APP-D

DPDK

Single core
with DPDK

Intel NIC RSS

Intel FPGA Dispatcher

APP-D

DPDK

Single core
with DPDK

APP-D

DPDK

Single core
with DPDK

… Release CPU cost from dispatcher.

Avoid packets deliver between cores.

More efficient on cache scheduling.

Why dispatcher in software

Can not use RSS hash, why?

Forwarding
DeviceClient Server

IP_C:port_C IP_D1:port_D1

IP_D2:port_D2 IP_S:port_S Precondition:

1. HASH value of both sides must be consistent
2. port_D2 can be decided

Calculate process：

HASH_VALUE = hash(IP_C, port_C, IP_D1, port_D1)

port_D2 = hash_inverse(HASH_VALUE, IP_D2, IP_S, port_S)

It is difficult to perform a “inverse
hash” based on hardware RSS HASH

History of “T1-system”

 1st Generation —— “kernel driver based” system

 2nd Generation —— Muti-Core MIPS64

 3rd Generation —— “Dispatcher-application” system

 4th Generation —— “Balanced-dispatcher” DPDK-equipped system

 5th Generation —— “DPDK+FPGA” system

 Why we need DPDK？How to use DPDK?

Why DPDK??
DPDK vs netMap

1. Performance: E5-2670V3 24cores/1000 policies/64-bytes throughput

Throughput
64bytes

Latency Average
(ns)

Netmap 27 Gbps 43700
DPDK 102.4 Gbps 20601

Why DPDK??
DPDK vs netMap

2. Performance: CPU cost analysis by oprofiler

System with DPDK System with Netmap

DPDK lib

Netmap lib

Why DPDK??

DPDK vs netMap
3. Code maintenance costs

Linux UIO driver

Intel DPDK PMD

User application
with DPDK

Netmap IO Libs

E1000E-netmap IGB-netmap IxGB-netmap

I40e-netmap IGBVF-netmap

User application
with Netmap

Other drivers
dr

Kernel

User User

Kernel

: Code block we should take care of

Application with DPDK

SW routine

Pkt flow Pkt queue

Execute flow

Get Pkts
from
rNIC

dispatch
Pkts

Get Pkts
from
vNIC

Pkts Handle Flush Pkts
to vNIC

Flush Pkts
to rNIC

queue A queue B queue C queue D

DPDK RX DPDK TX

DPDK MBUF

DPDK Ring DPDK Ring

DPDK functions APPDispatcher
rNIC vNIC

Agenda

 Our History — What is an embedded network device

 Challenge to us — Requirements for device today

 Our solution — T1 unique embedded network architecture（T1-System）

 Model of “embedded network architecture”

 History of T1-system

 Business layer of T1-system
 An optimization case —— dual-sockets system

 T1-system as a NFV

Multi-path traffic handle system

DPDK PMD

pre-routing forwarding post-routing

local-in local-out

route

5-tuple Analysis

User-space Socket

p
roxy-client TCP payload transaction

5-tuple dispatch fast patch
forwarding table

p
roxy-server

L4 features:
FIREWALL/L4 LB/……

Hit

Miss

L7 features:
SSL VPN/HTTP Comp/……

Create/Del

Fast path
(Base on dispatcher)

Performance path
(Base on netfilter)

Hi-function path
(Base on proxy)

Hi-function path

client Performance path

Server

Fast path

TRA
FFIC

Aim of Multi-path system:
Reduce CPU cost on traffic processing.

Dispatcher

App App App

Business layer of T1-System:

Agenda

 Our History — What is an embedded network device

 Challenge to us — Requirements for device today

 Our solution — T1 unique embedded network architecture（T1-System）

 Model of “embedded network architecture”

 History of T1-system

 Business layer of T1-system

 An optimization case —— dual-sockets system
 T1-system as a NFV

Optimization on Dual-sockets platform

NUMA 0 NUMA 1

PCIE PCIE PCIE PCIE PCIE PCIE

Mbufs

QPI

RX TX

PCIE PCIE PCIE PCIE PCIE PCIE

Mbufs

RX TX

Dispatcher Dispatcher Dispatcher

APP APP APP APP

Dispatcher Dispatcher Dispatcher

X

APP APP APP APP

1 2

1

Basic environment：

Separated buffers and queues
initialization on each Numa node

2 Ethernet ports bind with a single-
node.

Case 1： Packets cross-QPI

3

3 In case of simple handle of packets,
such as IP forwarding.

NUMA 0 NUMA 1

PCIE PCIE PCIE PCIE PCIE PCIE

Mbufs

QPI

RX TX

PCIE PCIE PCIE PCIE PCIE PCIE

Mbufs

RX TX

Dispatcher Dispatcher Dispatcher

APP APP APP APP

Dispatcher Dispatcher Dispatcher

X

APP APP APP APP

1
2

1

Basic environment：

Separated buffers and queues
initialization on each Numa node

2 Ethernet ports bind with a single-
node.

Case 2： Packets copy mode

3 In case of complex handle of
packets, such as traffic audit.

3

Optimization on Dual-sockets platform

Agenda
 Our History — What is an embedded network device

 Challenge to us — Requirements for device today

 Our solution — T1 unique embedded network architecture（T1-System）

 Model of “embedded network architecture”

 History of T1-system

 Business layer of T1-system

 An optimization case —— dual-sockets system

 T1-system as a NFV  NFV resource pool

 Fusion gateway

 New solution: OVS with DPDK

NFV Case1:NFV Resource pool

Intel Xeon Blade

VMa(FW)

DPDK

VMb(WAF)

DPDK

VMc(IPS)

DPDK

Guest3

VF1

VF2

VF1

VF2

VF1

VF2

VMa(FW)

DPDK

VMb(WAF)

DPDK

VMc(IPS)

DPDK

Guest2

VF1

VF2

VF1

VF2

VF1

VF2

NFVa(FW)

DPDK

NFVb(WAF)

DPDK

NFVc(IPS)

DPDK

Guest1

VF1

VF2

VF1

VF2

VF1

VF2

Intel NIC with VFs

HW SWITCH FABRIC

VLAN1
VLAN2
VLAN3

VLAN1
VLAN2

VLAN3

1

2
3

NFV Resource pool：

1 Multiple NFVs for each guest

2 Traffic between NFVs in the same guest is
forwarding by HW switch fabric

3 Traffic is isolated by vlan tag between guests

scene：

Multi-tenant in data-center/ same flow-define
template for each tenant/Elastic expansion

Update ports

Outside ports

NFV Case2:Fusion gateway

HW SWITCH FABRIC

Intel Xeon Blade

NFVa(FW)

DPDK

NFVb(ADC)

DPDK

NFVc(WAF)

DPDK

Intel NICs

Update ports

Passthrough

Trunk1 Trunk2 Trunk3

Outside ports
P1 P2 P3 P4

User defined flow rules, for example:
Rule 1: Trunk1 <—> Trunk2, tag value=100
Rule 2: Trunk2 <—> Trunk3, tag value=101
Rule 3: p1 <—> trunk1, tag value=200
Rule 4: p2 <—> trunk3, tag value=201

Web UI SDN Openflow

1

2

Fusion gateway:

1 Passthrough mode for IO Virtualization

2 Flexible flow-define rules:

FW ADC WAF

P1 P2
scene：

Gateway position/Face to network/High
performance/Feature fusion

About NFV-Comparison
Comparison of two scenarios

IO Virtualization Face to performance requirement number of VMs Configuration focus

NFV resource pool VF(SR-IOV) Guest Low High Virtual machine
management

Fusion gateway Passthrough Network High Low flow-define rules
configuration

Limitation：Rely on Hardware fabric

New solution —OVS with DPDK

OVS with DPDK is a low cost,
more flexible alternative.

Guest
T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

Host

OVS-vswitchdDPDKPF

Virtio backend

T1 NFV

DPDK

VF Virtio

T1 NFV

DPDK

VF Virtio

Intel NICs with SRIOV

VF PF

OVSdb-
server Flow-define rules

Thank you!

	Slide Number 1
	Embedded Network Architecture Optimization Based on DPDK
	Slide Number 3
	Our History
	Challenge to our system
	Model of ENA
	History of “T1-system”
	1st Gen—Kernel driver based
	2rd Gen—Muti-Core MIPS64
	3rd Gen—Dispatcher-Application
	3rd Gen—Dispatcher-Application
	3rd Gen—Dispatcher-Application
	4th Gen—DPDK-equipped system
	5th Gen—Maybe in the future
	Why dispatcher in software
	History of “T1-system”
	Why DPDK??
	Why DPDK??
	Why DPDK??
	Application with DPDK
	Agenda
	Multi-path traffic handle system
	Agenda
	Optimization on Dual-sockets platform
	Slide Number 25
	Agenda
	NFV Case1:NFV Resource pool
	NFV Case2:Fusion gateway
	About NFV-Comparison
	New solution —OVS with DPDK
	Slide Number 31

