
Creating OpenSTF
MTSC 2018



About me

• Hi, I’m Simo Kinnunen

• Created OpenSTF with Gunther Brunner in 2013

• Check out github.com/sorccu for some of my past work



What is OpenSTF?



What is OpenSTF?

• OpenSTF is an on-premises, free, open source device
management platform

• Apache 2.0 license

• 7,500+ stars on GitHub

• Compare to e.g. AWS Device Farm, Google Cloud Test
Lab



What does it do?

• Provides effortless remote access to your test devices

• Remote control for manual testing and debugging

• Remote monitoring and recovery of test runs

• Integrates with automation and development tools

• Appium, Jenkins, Android Studio, ADB, etc.



This is what it looks like



This is how you use it



Why use OpenSTF?

• Scales to thousands of devices

• Runs on commodity hardware

• Easy to use (though perhaps not to set up...)

• Open source



OpenSTF can be 
good for you



But, I’m not here to 
sell it to you



Our focus today

• To discuss how OpenSTF was created and how it
evolved over time

• With the power of hindsight, evaluate how we’ve done
and what we could do better now

• Provide insights into things we might do in the future



To understand the 
choices we’ve made...



...we have to go back.



Origins of OpenSTF



Origins of OpenSTF

• OpenSTF originally started as a test automation platform
back in 2013

• It’s called Smartphone Test Farm after all

• Remote control became a priority later

• Realized it was a better fit for our use case at the time

• Decided while building a feature to record test runs



Landscape in 2013



Android in 2013

• Android 4.3 had just been released

• Android 2.3 was still alive and supported

• Samsung Galaxy S2 and S3 were popular phones

• LTE wasn’t supported on all phones

• Surprising variety; many manufacturers have since
exited the business



Mobile testing in 2013

• Very little tooling existed

• Tools that did exist were mostly immature and 
unstable

• Very little documentation existed

• Almost nothing was open source

• As a result, few tests were actually written



Our challenge



Our challenge

• To create a system that supports every single Android
device

• Including Android 2.3, of course

• Make it usable on any machine without having to install
anything

• Integrate with existing tooling

• We don’t want to redo everything



Initial prototype

• An initial prototype was running within a few months

• Used adb’s undocumented framebuffer command for
screen capture

• Monkey tool for input

• Basic adb commands glued together



It sucked.



What didn’t work
• Unpredictable USB disconnections

• Physical devices were a huge mess

• Only about 10% of our devices were “fully functional”

• Touch events didn’t work at all on some devices, or
certain views like the home screen and settings were not
functional

• Obviously no multitouch

• Super slow



Solving the hardware 
side



Disconnections

• Modern Intel CPUs assign relatively few resources to the
built-in USB host controller

• Practical limit of around 8-12 devices per machine

• Most USB hubs don’t provide enough power to both
charge the phone and keep a stable data connection

• Sometimes USB cables break

• ADB is horrible on macOS



CPU issues
• Our solution:

• PCIe cards with built-in USB host controllers

• Other options:

• More machines

• On some machines you can enable a hidden second USB 
host controller

• Use another CPU vendor (though that may bring other 
issues)



USB hub issues
• Our solution:

• A Battery Charging 1.2 compatible USB hub (up to 1.5A per port) for
most devices

• A spec-violating 1A hub for older devices

• A relatively expensive, programmable USB hub

• Other solutions:

• Plug directly into a machine. Usually doesn’t help much.

• Reduce power usage (e.g. screen). Almost never works.

• Fewer devices per machine



Operating system

• Just use Linux, you’ll save a lot of time.

• Avoid macOS at all costs. It works until it doesn’t.



Bandwidth limits

• ADB’s USB bandwidth used to max out at roughly 
5MB/s regardless of device

• A single Full HD RGBA framebuffer is about 8MB

• Clearly, we couldn’t even do 1 FPS even if the 
capture itself was relatively fast (it wasn’t)



Organization

• It turns out that nobody sells a device shelf, especially
for 100+ devices

• Our solution:

• Design a custom shelf by ourselves































Software side



Reliable touch input



Reliable touch input
• Monkey is far from reliable

• Turns out that the adb shell user belongs to the input
group

• The input group has r/w access to /dev/input/event*

• One of those input devices is the touchscreen, and
writing to it will generate touch events

• Read events and describe devices with the built-in
getevent command



Reliable touch input
• Our solution: minitouch, a small, custom NDK-built C

program

• Automatically detects the correct touch device

• Exposes a socket interface, translates commands to raw
Linux kernel touch events

• Supports real-time multi-touch

• Additional requirements on some devices, e.g. Xiaomi

• Fixed >90% of the non-functioning devices we had



Reliable touch input

• Minitouch still works well and supports almost all
devices

• Viable options in 2018:

• Grant INJECT_EVENTS permission via adb and use
Android Java APIs



Fast screen capture



Fast screen capture

• Originally used adb framebuffer, wasn’t working out

• The adb shell user belongs to the graphics group

• The graphics group is allowed to connect to 
SurfaceFlinger, a private service behind private APIs



Fast screen capture

• Our solution: minicap, a small C++ NDK binary

• Uses private APIs to create a virtual display on Android
4.3 and later

• Uses the ScreenshotClient private API on older
Android versions

• Converts framebuffers to JPG via turbojpeg, which is
surprisingly fast. Modern devices reach 40+ or higher
FPS easily.



Benefits of minicap

• Near real-time

• Works on any Android version including 2.3

• Can pretend to be a “secure” screen, meaning it can
capture views with FLAG_SECURE

• Relatively small JPG file size doesn’t overwhelm the
USB bus

• Simple to use



Disadvantages of minicap
• Uses private APIs

• Has to be recompiled for each new Android version

• Developer previews in particular are annoying,
because Google doesn’t release the real source code
they’re using

• A small number of devices don’t work, but we’ve fixed
plenty

• JPG is pretty low-tech in 2018



Tooling integration



Tooling integration
• Most tooling integrates with adb

• As long as the device is on ADB, it’ll usually work

• OpenSTF provides “fake” devices that you can adb
connect to

• Identity is confirmed via adb keys

• Requests are proxied to the real device

• Implemented in adbkit, one of our projects



Tooling integration

• Create an API token

• Register your adb key

• Retrieve “adb connect” URL via API

• Run “adb connect”

• The device is now connected to your local adb and is
usable in e.g. Android Studio and Appium.



Lessons learned



Lessons learned

• Overall, many of the components have held up pretty
well and are still useful today.

• But, if OpenSTF was started today, what would I do
differently?



Things I’d do differently

• No private APIs. It was cool to make it work, but it’s
been a pain to maintain over the years

• Rethink the architecture a bit to make it easier to deploy
the project

• We get questions all the time

• Don’t cheap out on hardware, it’ll pay for itself over time



Things I’d do differently

• We expected more contributions due to using a 
relatively easy language (Node.js/JavaScript)

• In reality, while there have been some, there have 
definitely been fewer contributions than we thought

• With that in mind, I’d probably go with Rust now

• AngularJS was a decent choice at the time, but now I’d 
definitely go with React



Things I’d do differently

• OK to abandon full backwards compatibility if it makes
sense, or new development easier

• Community management and responding to issues has
been difficult at times

• Welcome early contributors and make them part of the
team if possible

• Lack of analytics has been an issue



Things I’d do differently

• Rather than a browser app, focusing on native apps first
would make more sense now

• Native development is easier with advanced features
such as video streaming, and a better user experience
overall



Insights



Things we want to do

• Android P support (soon)

• Get rid of JPEG rendering, use h264 over WebRTC
instead (eventually)

• Ability to properly reset devices (eventually)

• iOS support (eventually)



That’s all!



To stay up to date

• Check github.com/openstf/stf every now and then for
future updates


