

排電表式計步在

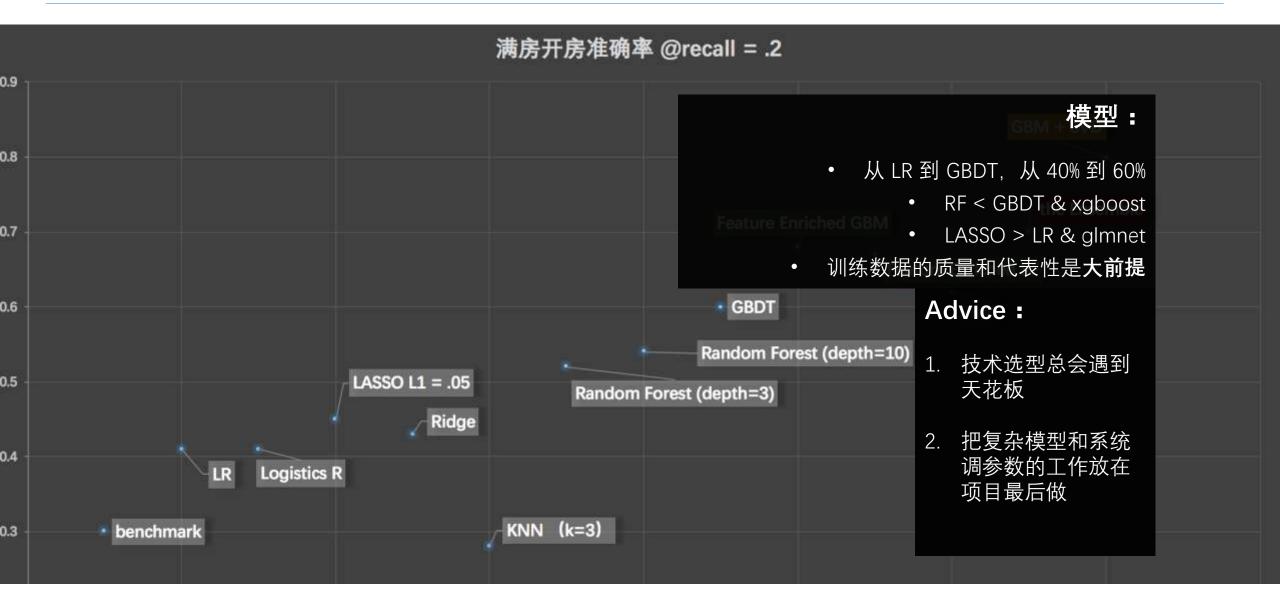
优化模型不得不想的几个问题——理论与案例

分享人(胡淏)

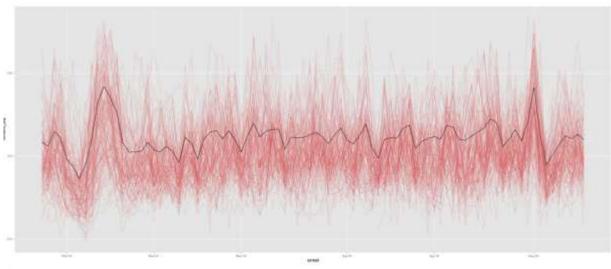
胡淏

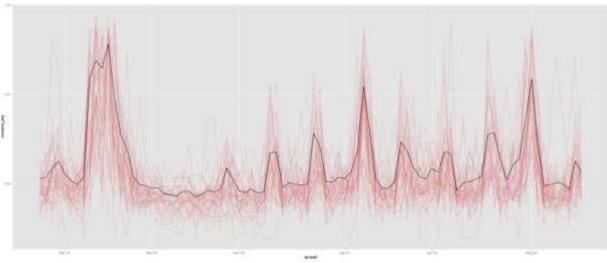
- 数学/经济学/统计学 (ML)
- 美团 / 支付宝 / Ctrip / Quaera
- 算法体系、平台
- Columbia University grad

- 如何优化一个模型
- 模型类项目方法论
- 复杂业务的模型体系


桔子精选商务 大床房 查看详情 ▼	标准价 预订满意度 100%	大床	无早	无线免费	11	免费取消	¥839	新订 到店付 房量紧张
促销大床房 查看详情 •	标准价 预订满意度 100%	大床	无早	免费	22	免费取消	¥639	可完
促销双床房 查看详情 ▼	标准价 预订满意度 100%	双床	无早	无线免费	22	免费取消	¥679	河完
双床房 查看详情 ▼	标准价 预订满意度 100%	双床	无早	无线免费	22	免费取消	¥729	订完 到店付
大床房 查看详情 ▼	标准价 预订满意度 100%	大床	无早	无线免费	22	免费取消	¥689	打完
枯子精选豪华 大床房 查看详情 ▼	标准价 预订满意度 100%	大床	无早	无线免费	11	免费取消	*829	河宗

號车距离28.8公里(约78分钟) 首都国际机场 路线 驾车距离23.6公里(约29分钟) 背景: 1. 业务问题: 1. 10%房型不可订, ---2. 数据分析发现,30%不 可订房型实际可订 2. 痛点:无法批量、准确识别 可订房型 3. 解决方案:通过机器学习周 期性搜索可订房型,自动开 房



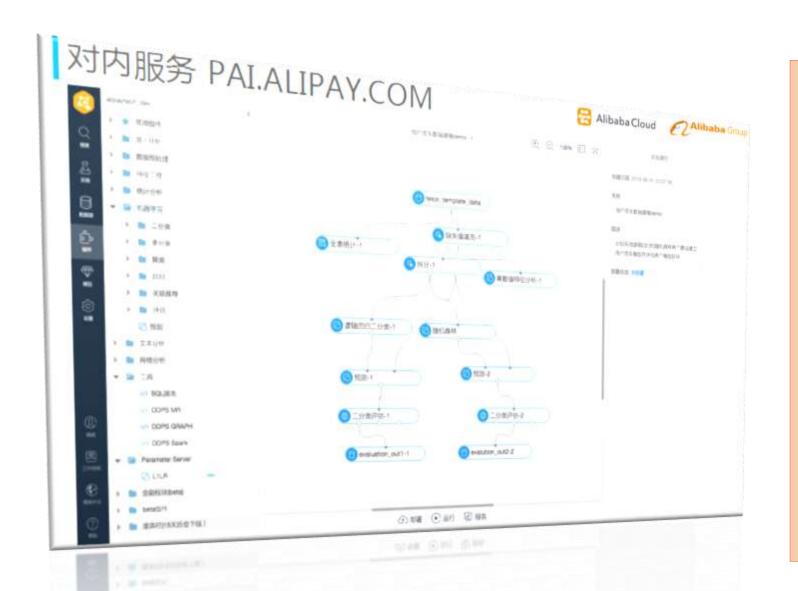

满房开房准确率 @recall = .2

一种刻画两个高维分类变量之间交通作品

- 1. 关键问题:一个房型当日、未来的满房率是什么样子的?
- 业务痛点:不同房型、不同日期的满房概率是不同的;节假日预测不准确。
- 3. 方法
 - a) 城市-房型结构化SVD (SoftImpute)
 - a) NetFlix: Rate = User + Movie + user:Movie
 - b) Ctrip: P = Room + Date + Room:Date
 - c) 降维:U_{md} D_{dd} V_{nd}T -> U_{m3} D₃₃ V_{n3}T
 - b) 冷启动

一种刻画两个高维分类变量之间交画作品

特征工程这件事儿,要做到极致。


- 1. 时刻思考新特征拓展、旧特征细化的工作
- 2. 业界可以做出更优秀的模型:
 - 数据不是限定的
 - 运营那边有很多信息量
 - 把业务理解转化为特征建模的过程很重要

• RD在做特征时通常的问题

- 缺思路 (变量体系)
- 缺方法 (业务>特征>模型)
- 缺耐心 (业务评审会)
- 缺时间 (乱尝试、过调参)

Alipay算法RD的工作模式

- 1. 平台化
 - 数据地图 (特征查询)
 - ODPS + Sonic平台 (特征清洗)
 - PAI / Xlab 线下/上模型训练、数据分析平台
 - UCT… 线上部署
 - Alisis + 模型宝 监控报警
- 2. 技术溶于运营
- 3. 将特征做到极致

Recap:优化一个模型不得不够,并太顺道的

低优先级

高优先级

技术选型:

业务导向:在项目排期、 业务预期等多方面约束下,

恰到好处的选型

优先级:项目最后一步 模型本身:GBDT、LASSO

特征:

价值:突破项目天花板的有效武器

业务导向:特征源自运营,用特征充分刻画业务理解

方法论: 变量体系、研发流程, 旧特征精细化、新特征拓展 (高维分类变量)

数据: 数据是模型性能的上确界

训练数据 一致对接 线上预测的业务场

景

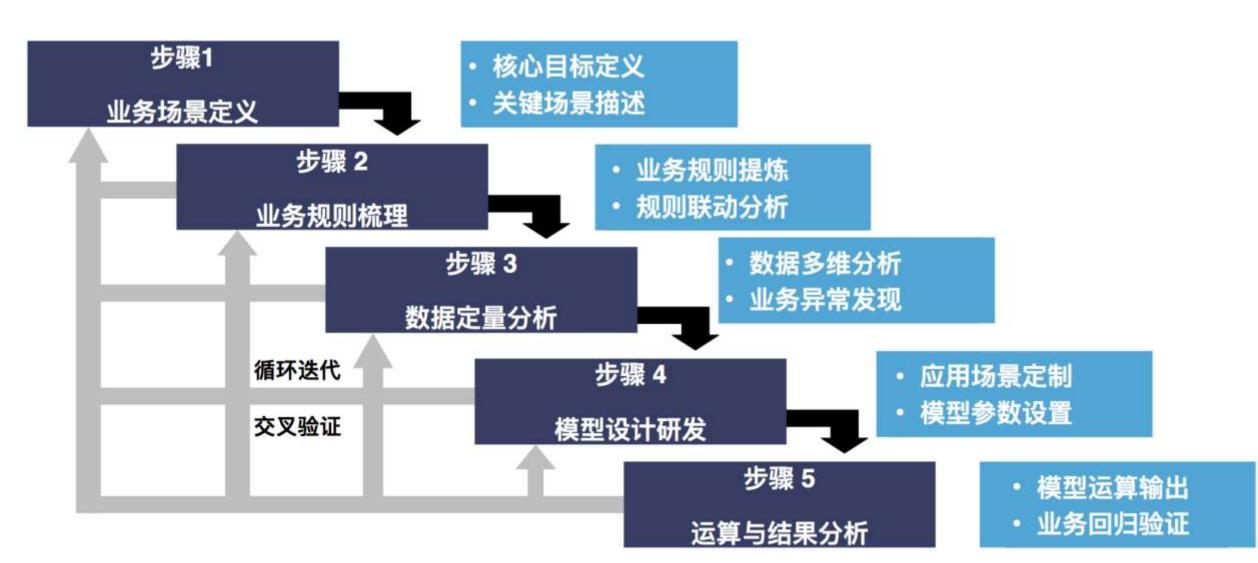
噪音的过滤 与 99%准则

业务:

界定问题:业务核心目标、场景

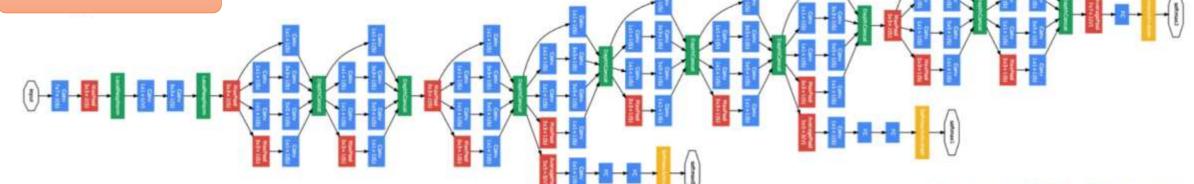
(技术目标要倒推)

评估方案;


追求闭环:项目的输出是什么?

如何运营?

	业务 & 项目推进	特征 & 数据	模型
业务场景定义	访谈客户		
业务规则梳理	内部讨论	现有业务特征	在业务、数据、开发、 排期的限制下选择恰当 的模型方案
数据定量分析	数据分析,验证技术方案有效性 访谈客户 ①	形成变量体系 特征线下开发、评估	如有必要,用简单模型
模型研发、评估	访谈客户	特征精细化 ⊕ 特征线上开发 ⊕	模型体系 复杂模型
线上开发、灰度	模型运营 ⊕	监控特征 ⊕	监控模型 ●



复杂业务:

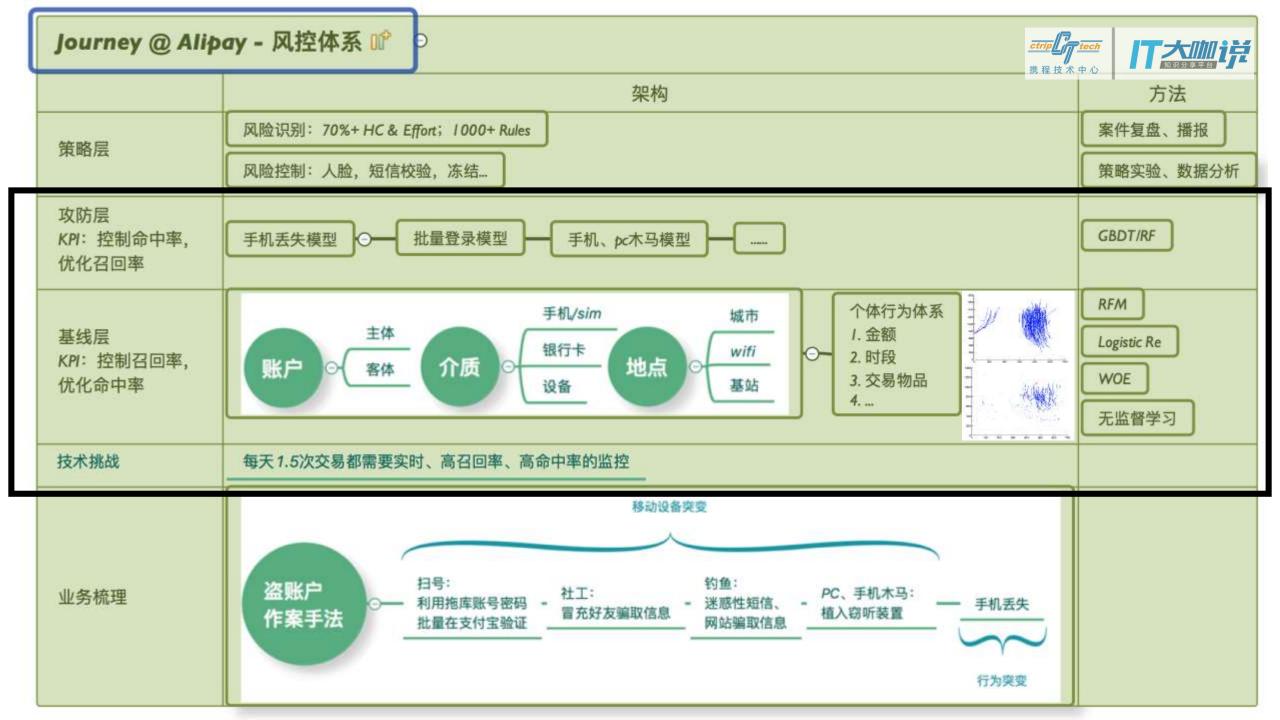
- 同个业务方向,需要多个模型项目支撑 e.g. 风控体系、运力规划、尾部用户体验…
- 同个模型项目,服务多个业务方向 e.g. 外卖配送时间预估算法、配送调度算法、推荐排序

模型体系:

业务规则层:

复杂业务高度抽象

基线层:


- 1. 刻画业务交集部分
- 2. 核心基础特征 e.g. UMID、 关系、可信、基础行为
- 3. 模型深度、复杂、T+1

攻防层:

- 1. 刻画业务特性部分
- 2. 业务关注的长尾部分
- 3. Velocity

策略层:

- 1. 疑难杂症
- 2. 多目标联调

时间预估算法体系 📫

	职能	模型	项目
策略层 业务方向协同	面向效率、体验、极端case等非常规机 器学习问题,做贴近业务的策略模型	时间与用户体验策略	预调度、时间与用户体验 极端case优化 协同优化
攻防层 极端case补时	面向"突变"pattern,实时优化 (online-learning)	送达时间实时优化 未来N分钟时间、单量	实时优化 未来Nmin指标预估
基线层 历史pattern&复杂模型	面向对历史pattern的深度挖掘学习	送达时间 入离店时间差 交付时间 出餐时间	三段论模型 骑手轨迹 入离店时间差 交付时间预估

携程技术中心

THANK YOU!

