

LiveVideoStack Meet 后直播时代技术

2017年7月29日 广州站

LiveVideoStack Meet

合作伙伴:

媒体伙伴:

LiveVideoStackCon 2017 音视频技术

北京 10月20日-21日

≥ive Vide **⊙** Stack Con

2017年末音视频技术人大Party,他们都来了!

陆 坚:沪江合伙人、沪江旗下CCtalk教育云公司总裁

汤峥嵘:tutorabc CTO 李刚江:百家云 CEO

陆其明: 爱奇艺 技术总监 夏鹏: 搜狐千帆直播 联合创始人

殷宇辉:360直播云 高级技术经理 杨继珩:沪江CCtalk 技术VP

杨成立:开源流媒体服务器SRS作者 鲍金龙:暴风影音 首席架构师

吴涛: 陌陌 视频直播媒体技术负责人 赵丽丽: 美图 技术总监

王 田: 华为多媒体实验室 首席科学家、实验室副主任

傅德良: HuLu 全球高级研发经理 视频编解码与传输领域资深专家

李大龙:腾讯视频移动端播放内核技术负责人

基于行业细分的音视频技术解析

腾讯音视频实验室 李博

行业渗透

可扩展的功能

方案的选择 质量的平衡

质量评估体系

*// 蝶扣立细斑克心宁

一个好的视频云服务商

行业特性

基础

直播/点播/ 实时通讯

推流SDK

播放器SDK

屏幕分享

实时翻译

文档演示

教学白板

HLS/RTMP/ FLV

实时转码

CDN 全球部署

K歌伴奏

PSTN

SIP扩展

连麦互动

实时录制

水印/鉴黄

N训什关

美颜/滤镜

私有化部署

IM聊天

安全性

高并发

混流

HEVC

加密

全平台

云Qos

以教育类场景为例

分类	能力项	描述 LIVEVIDEOST			
音视频通信	音视频通话	发起/接收两人及多人通话			
	文档演示	发起/接收文档演示			
	屏幕分享	发起/接收屏幕分享			
	白板及画笔	发起/接收白板及双向画笔			
	录制和回放	支持云端录制和回放			
	连麦和发言管理	支持发言连麦和禁言管理			
	设备管理	支持设备检测及调测			
	家长监听	支持家长/助教巡查老师和孩子上课情况			
	美颜	支持视频画面美颜处理			
	弹幕	支持直播课程弹幕			
#7 -+	IM	直播过程聊天			
轻互动	微信直播	支持微信扫码打开直播			
	打赏、互动游戏	课程过程打赏及互动			
视频处理	视频转码	选择模板进行转码、水印			
	视频内容保护	视频防盗及版权保护			
其它	数据分析统计	统计听课时长和互动率等			

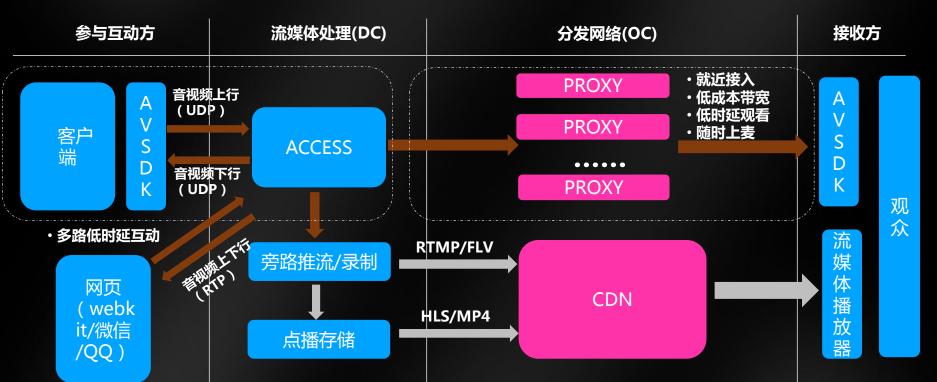
可扩展的功能

方案的选择

质量的平衡

质量评估体系

目前主流的方案



方案	延时	PC端 浏览器支持	移动端 浏览器支持	可控制性
RTMP	中	优	差	差
FLV	中	优	差	差
HLS	差	差	优	差
RTP	优	差	差	优

整体音视频架构

客户端音视频模块

音频采集播放、视频采集播放、音视频前后处理 语音Codec PLC/变速 码率控制 视频Codec 音频Jitter Buffer 流量控制 视频Jitter Buffer 新見銀色

中转、直连、重定向、测速、均匀发送、带宽估计

TCP, UDP, UDT

接收解

编码发送

根据场景编解码器的选择

Codec 类型	采样率	硬件支 持	性能消 耗	安装包	音乐音 质	语音音乐 Mix音质	低带宽 切换	最低工作 码率
SILK	16/24	否	低	<200K	一般	一般	顺畅	8K
AAC-ELD	32/441/ 48	高版本 支持	中	1M左右	很好	好	切换 codec	20K
Opus	8-48	否	中	500K	好	好	顺畅	8K

Codec 类型	占用带 宽	硬件支 持	性能消 耗
H264	高	大部分	中
HEVC	低	少部分	高

三级编码自适应

长时低带宽后新的编码参数

二级帧率自适应

稍长时间带宽变化

一级码率自适应

针对短时的突发降低

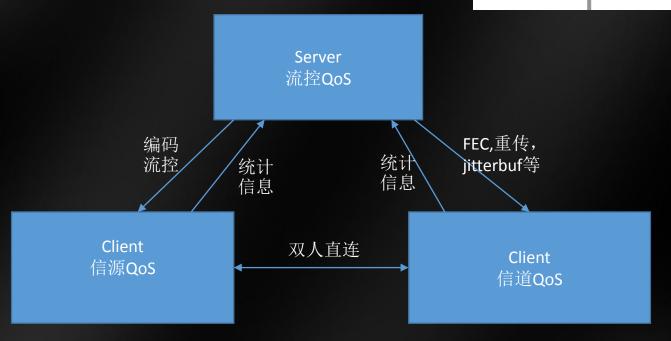
三个音视频通讯场景

游戏MOBA

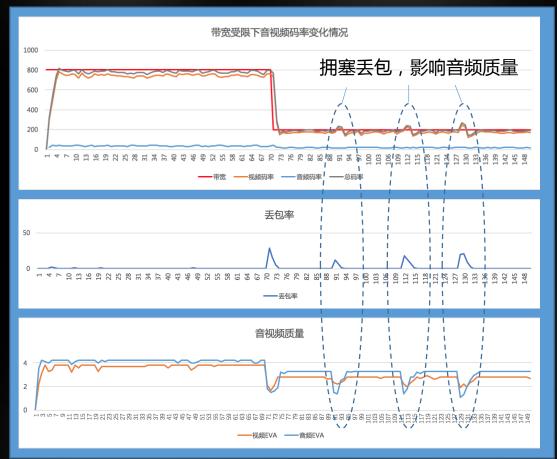
?

K歌

?


多人实时通话

?



案例:音视频联合流控

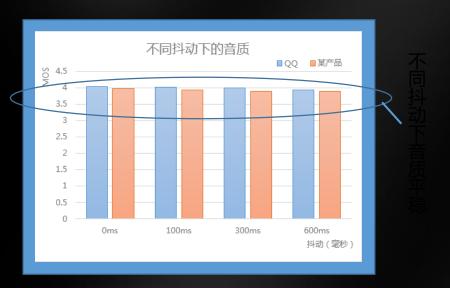
应对方案:优先保证音频质量

- 优先降低视频码率
- 使用音频冗余试探带宽
- 不使用丟包率作为带宽探 测判断依据

基于场景的网络及流控

可扩展的功能

方案的选择 质量的平衡



质量评估体系

案例:音频端到端延时测试

更需要关注的是:在不同场景和环境下,各指标的情况是怎样的

音视频质量的平衡

可用资源有限

清晰度

噪点

网络抗性

超清

带宽探测精度

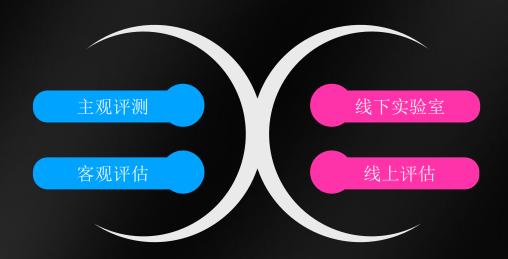
流畅度

亮度

通话延时

耗电

带宽探测速度


矛盾与平衡

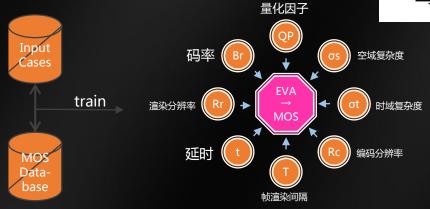
鱼与熊掌不可兼得

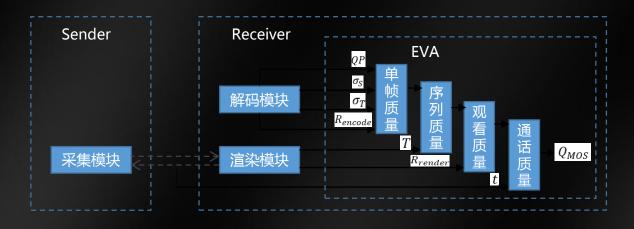
音视频质量评估体系的构

A 全参考评估

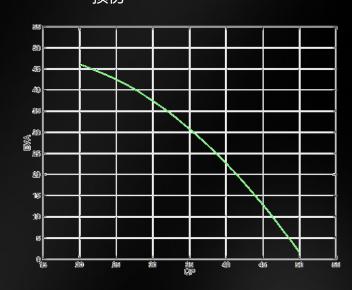
- 参考原始信号
- 准确性更高
- 不适用于原始信号增强类需求
- PSNR , SSIM , PESQ , POLQA

B 无参考评估

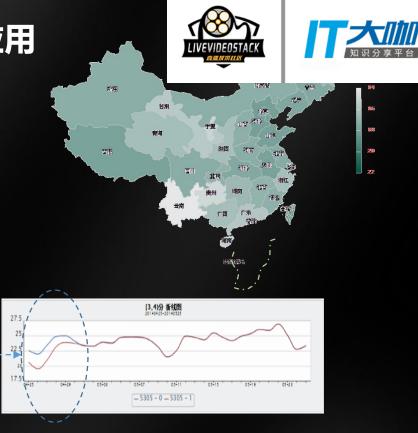

- 不参考原始信号
- 准确性相对较低
- 更适合线上评估
- G.1070


线上质量评估,无法获取原始信号

无参考评估体系EVA-以视频为例


质量评估-无参考评估体系EVA-QP

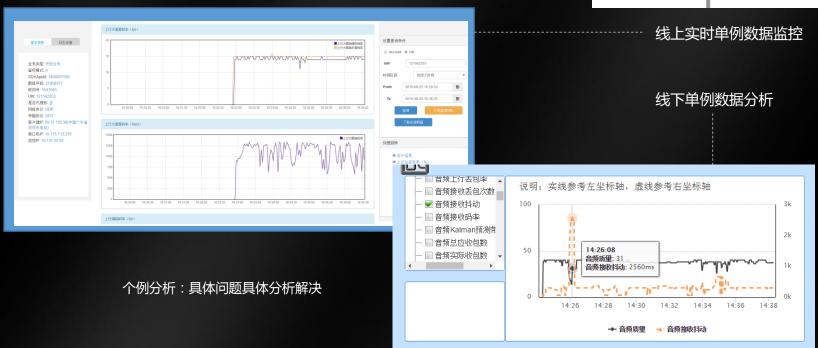
实验发现,QP与单帧质量强相关


质量评估-无参考评估体系的应用

EVA的优势:

- 能够较高拟合度地反映用户体验
- 可以很好的实现线上大盘评估

应用:


- 分时、分区域观测全网音视频通话质量
- 评估后台接口机部署质量
- 版本上线监控
- A/B Test

质量评估-个例分析

全局与个例分析相结合,建立全维度数据分析与监控能力

Thank you!