
#MDBW17

Mongoing

Michael Cahill  
Director of Engineering (Storage)

MONGODB STORAGE ROADMAP: 
3.6 AND BEYOND

#MDBW17

WHO ARE WE?

#MDBW17

WHERE ARE WE?

#MDBW17

WHERE DO WE FIT?

Distributed Systems 
(Replication and Sharding)

Query

Storage

Platform

#MDBW17

WHAT DO WE DO?

➔ All MongoDB storage engines 
(MMAPv1, WiredTiger, inMemory, encrypted)

➔ Storage Engine API
➔ Concurrency control
➔ Durability and crash recovery
➔ Catalog and metadata (create, drop, rename)
➔ Index builds (e.g., foreground vs background

#MDBW17

WHY SHOULD YOU CARE?

• Storage layer keeps your data (crash) safe
• Performance of local operations depends on:
‒ Locking / queuing
‒ Reading from disk
‒ Writing to disk

#MDBW17

AGENDA

Upgrade /
downgrade

Deprecate
MMAPv1

Transaction
support

New storage
engines

3.6 3.8+ 3.8+ 4.0+

#MDBW17

UPGRADE / DOWNGRADE

Since 3.0, no incompatible changes to files written by WiredTiger
What about?
➔ New compression support
➔ Store deltas when large docs change
MongoDB now has a stable upgrade/downgrade procedure
➔ PM-755 Upgrade/downgrade support in WiredTiger

https://jira.mongodb.org/browse/PM-755

#MDBW17

WHY TRANSACTIONS?

• MongoDB was designed for a NoSQL world
‒ One document at a time
‒ Transactions across documents less of an application requirement

• MongoDB application domain growing
‒ Supporting more traditional applications
‒ Often, applications surrounding the existing MongoDB space

• Also, simplifying existing applications

#MDBW17

TRANSACTIONS: ACID

• Atomicity
‒ All or nothing

• Consistency
‒ Application constraints are not violated

• Isolation
‒ Concurrent transactions do not interfere with each other

• Durability
‒ Committed updates survive server restarts and network failure

#MDBW17

MONGODB’S PRESENT

• ACID for single-document transactions
‒ Atomically update multiple fields of a document (and indices)
‒ Transaction cannot span multiple documents (or collections)
‒ Durability provided by “w: majority” updates

• Single server consistency
‒ Eventual consistency on the secondaries

#MDBW17

TRANSACTION ROADMAP

Safe secondary reads

Causal consistency

All writes retryable

Single replica set
transactions

Global point-in-time
reads

Multi-doc transactions

3.6 3.8 4.0

https://drive.google.com/open?id=0B5iz00FB4bkiUGQ3aTNyX28zaEE

#MDBW17

STEP 1: DEPRECATE MMAPV1

MMAPv1 is tuned for some use cases that are slower in WiredTiger:

PM-720 Fast in-place updates to large documents

PM-771 Work better with lots of collections

PM-714 Store multiple collections per table

PM-493 / PM-707 Better repair for corrupted databases

https://jira.mongodb.org/browse/PM-720
https://jira.mongodb.org/browse/PM-771
https://jira.mongodb.org/browse/PM-714
https://jira.mongodb.org/browse/PM-493
https://jira.mongodb.org/browse/PM-707

#MDBW17

TRANSACTION SUPPORT IN 3.6+

WiredTiger already has transactions, how hard can it be?

PM-297 Collection catalog versioning

PM-716 Make drops two phase

PM-705 / PM-673 Timestamps in WiredTiger

PM-674 readConcern: majority available by default

https://jira.mongodb.org/browse/PM-297
https://jira.mongodb.org/browse/PM-716
https://jira.mongodb.org/browse/PM-705
https://jira.mongodb.org/browse/PM-673
https://jira.mongodb.org/browse/PM-674

#MDBW17

WIREDTIGER UPDATES

• Updates include
‒ Transaction ID (is the update committed / visible?)
‒ Data package

Transaction ID
+

Data

Key

#MDBW17

MULTI-VERSION CONCURRENCY CONTROL

• Each key references
‒ Chain of updates in most recently modified order
‒ Original value, the update visible to everybody

Transaction ID
+

Data

Key

Transaction ID
+

Data

Globally
Visible
Data

#MDBW17

TIMESTAMP SUPPORT IN WIREDTIGER

• Applications have their own notion of transactions and time
‒ Defines an expected commit order
‒ Defines durability for a set of systems

• MongoDB now sends transaction timestamps to WiredTiger
‒ 8B but expected to grow to encompass system-wide ordering
‒ Mix-and-match with native WiredTiger transactions

#MDBW17

MONGODB 3.6 READS “AS OF” TIMESTAMP

• Updates now include a commit timestamp
‒ Timestamp tracked in WiredTiger’s update
‒ Smaller is better, as a significant overhead for small updates

• Commit “as of” a timestamp
‒ Set during the update or later, at transaction commit

• Read “as of” a timestamp
‒ Set at transaction begin
‒ Point-in-time reads: largest timestamp less than or equal to value

#MDBW17

MONGODB 3.8: STABLE TIMESTAMP

• Limits future replication rollbacks
‒ Imagine an election where the primary hasn’t seen a committed update

• WiredTiger writes checkpoints at the stable timestamp
‒ The storage engine can’t write what might be rolled back

• Cannot go backward, must be updated frequently

#MDBW17

TRANSACTION SUPPORT LONGER TERM

PM-715 Recover to a timestamp
➔ avoid complex replication rollback logic

Transactional secondary apply of oplog
➔ secondaries apply operations without locking
➔ storage layer returns consistent results

https://jira.mongodb.org/browse/PM-715

#MDBW17

TRANSACTION SUPPORT LONGER TERM

PM-494 Transactional create, drop and rename

PM-663 Hybrid index builds
➔ foreground build speed without locking

PM-710 2-phase commit

➔ detect reads of prepared updates

https://jira.mongodb.org/browse/PM-494
https://jira.mongodb.org/browse/PM-663
https://jira.mongodb.org/browse/PM-710

#MDBW17

STORAGE PROJECTS 4.0+?

Write-optimized store (LSM)

Analytics / Column store
➔ Store and query with field granularity
➔ Fast for projections on (lots of) sparse documents

#MDBW17

STORAGE PROJECTS 4.0+?

Mobile store

➔ Optimized, low-footprint storage for mobile devices

Cold store
➔ Use S3 (or similar) for cheap, slow, high-availability storage

Michael Cahill  
Director of Engineering (Storage)

MONGODB STORAGE ROADMAP 
!

