

在线学习在点评搜索中的实践

杨一帆@点评平台及综合事业群/搜索推荐智能技术中心

杨一帆

点评搜索业务负责人

华中科技大学互联网中心

腾讯TEG

点评算法团队 用户画像/CPM广告/团购搜索/智慧销售 点评搜索推荐团队 搜索业务排序/在线学习平台/机器学习平台

业务介绍

业务职责

业务框架

服务架构

业务特点

在线学习

狭义概念

广义实时

困难挑战

搜索实践

实时计算体系

模型训练

效果监控

业务介绍

业务职责

业务框架

服务架构

业务特点

在线学习

狭义概念

广义实时

困难挑战

搜索实践

实时计算体系

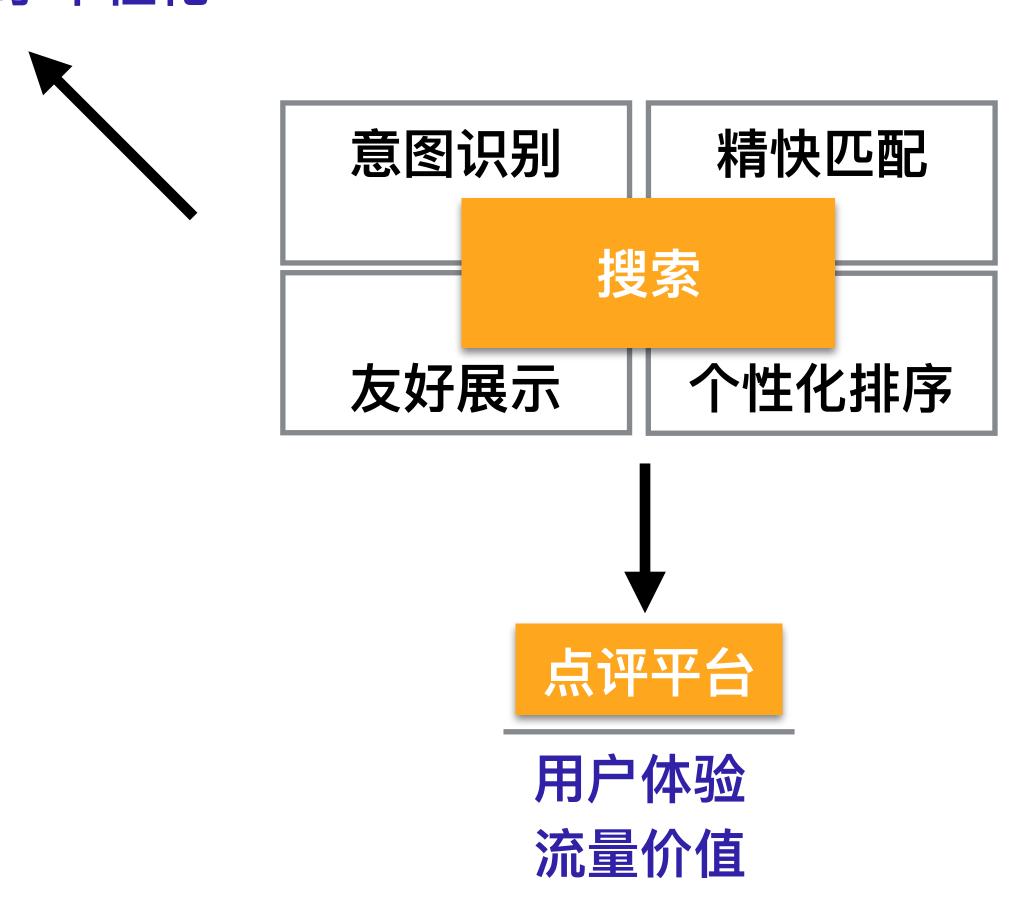
模型训练

效果监控

信息分发 准确 实时 个性化

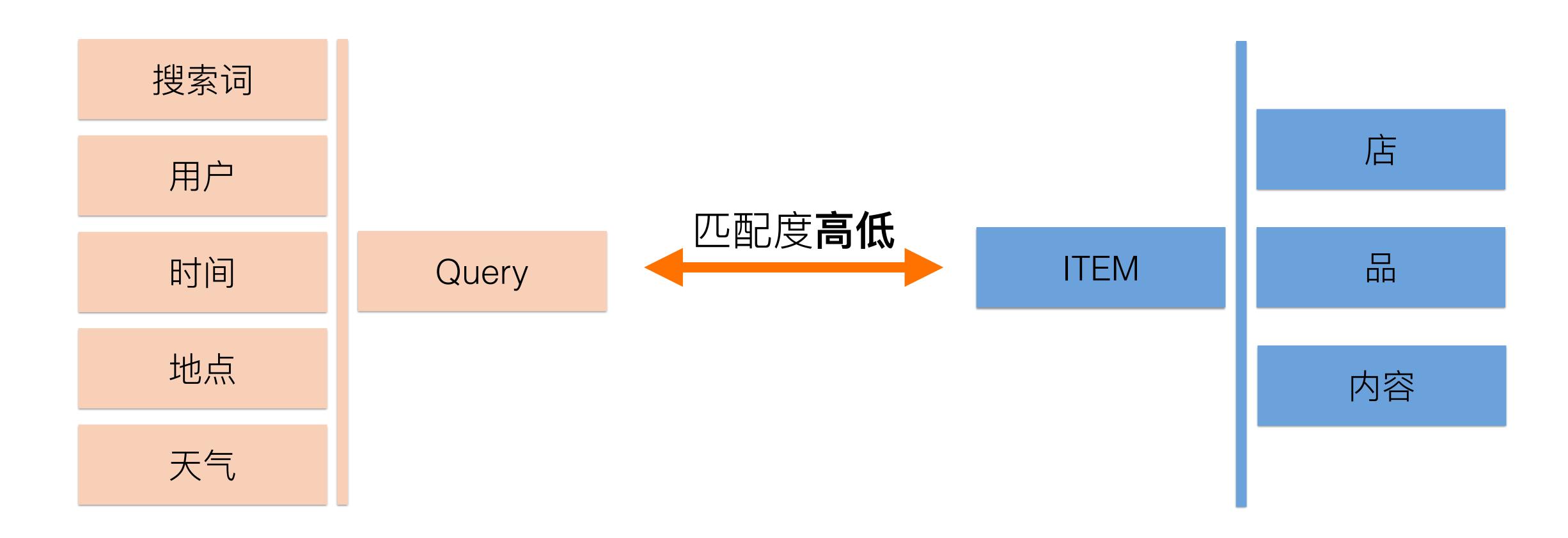
用户触达 曝光效率

商家

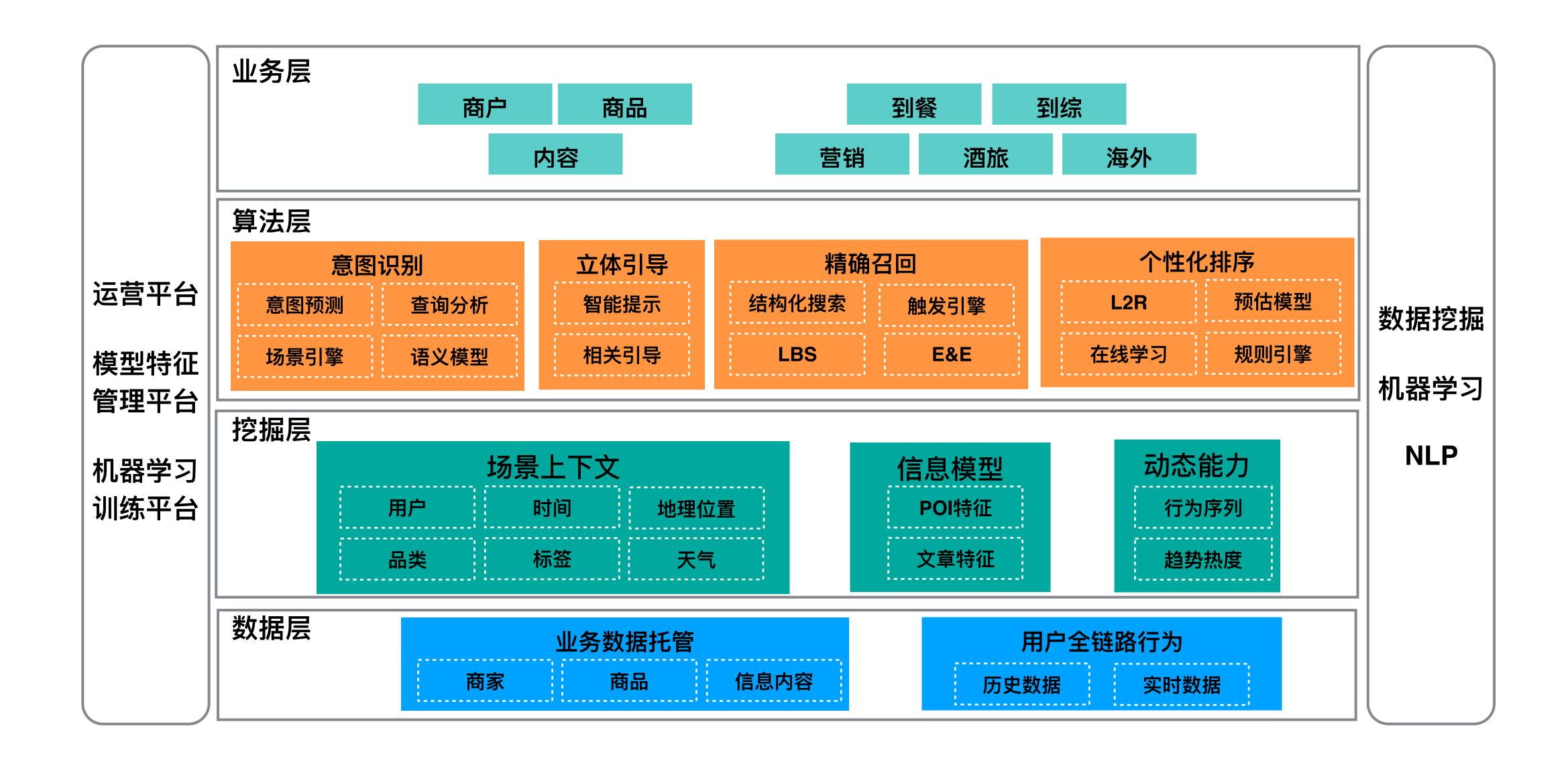


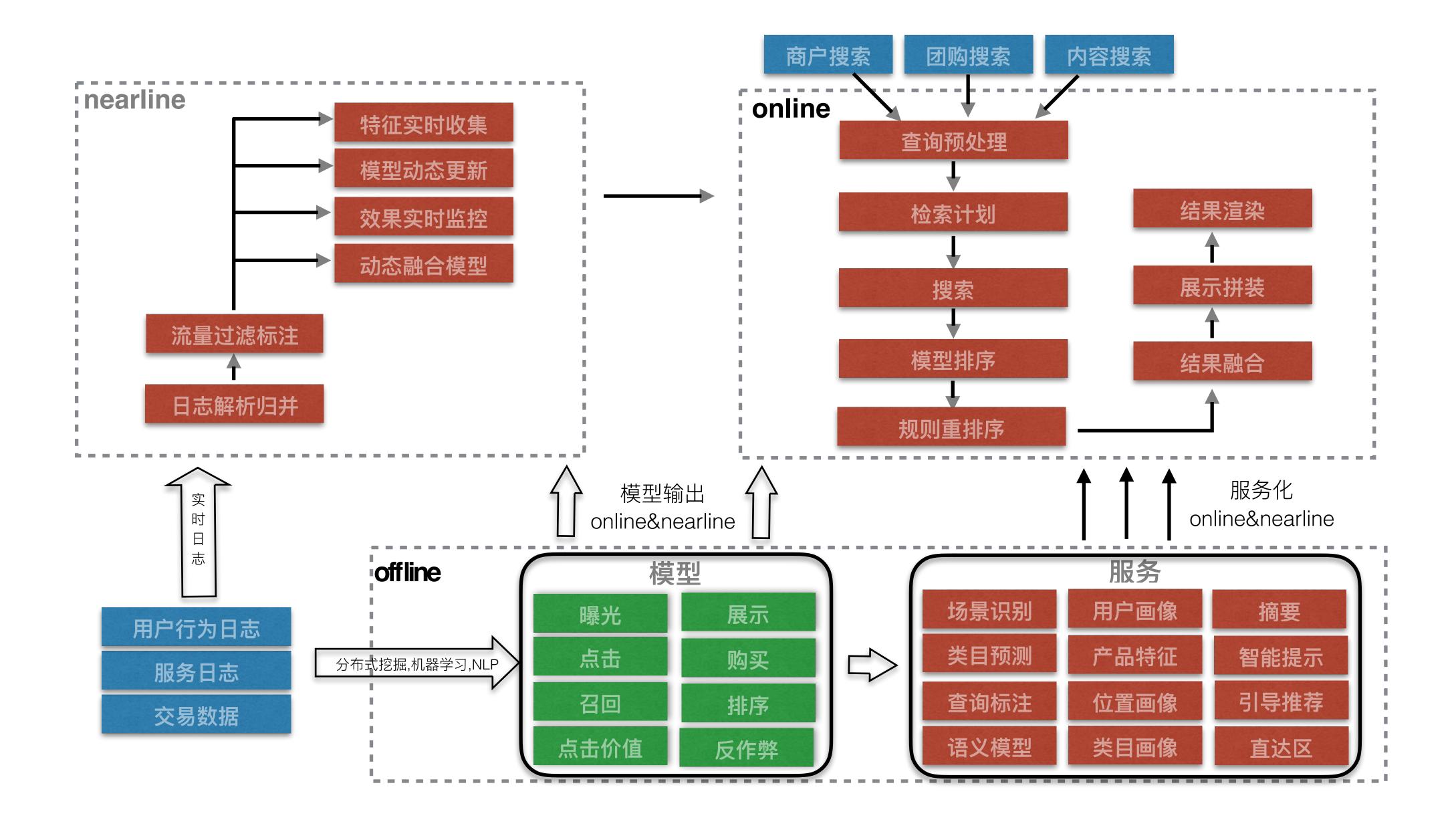
业务职责

业务本质



业务框架

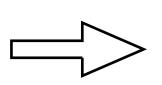




业务特点

用户角度

- 聚餐吃烧烤还是火锅
- 下雨不想出去吃

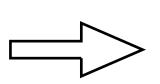


业务特点

- 需求不断变化
- 受环境影响大

商户角度

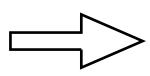
- 排队、客满
- 发布优惠靠传单



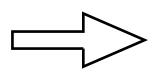
- 状态实时变化
- 即时变化难体现

环境角度

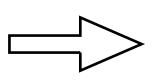
- 七夕节约会
- 名人出没



- 相关特征难构造
- 实时热点难捕捉



- 模型迭代速度要求高
- 需要拟合实时分布

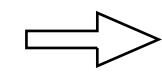


适用在线学习

- 快速适应变化
- 新数据无需重复训练
- 原理简单易懂
- 高扩展性
- 支持并行化

技术角度

- 模型迭代速度慢
- 模型影响数据分布



业务介绍

业务职责

业务框架

服务架构

业务特点

在线学习

狭义概念

广义实时

困难挑战

搜索实践

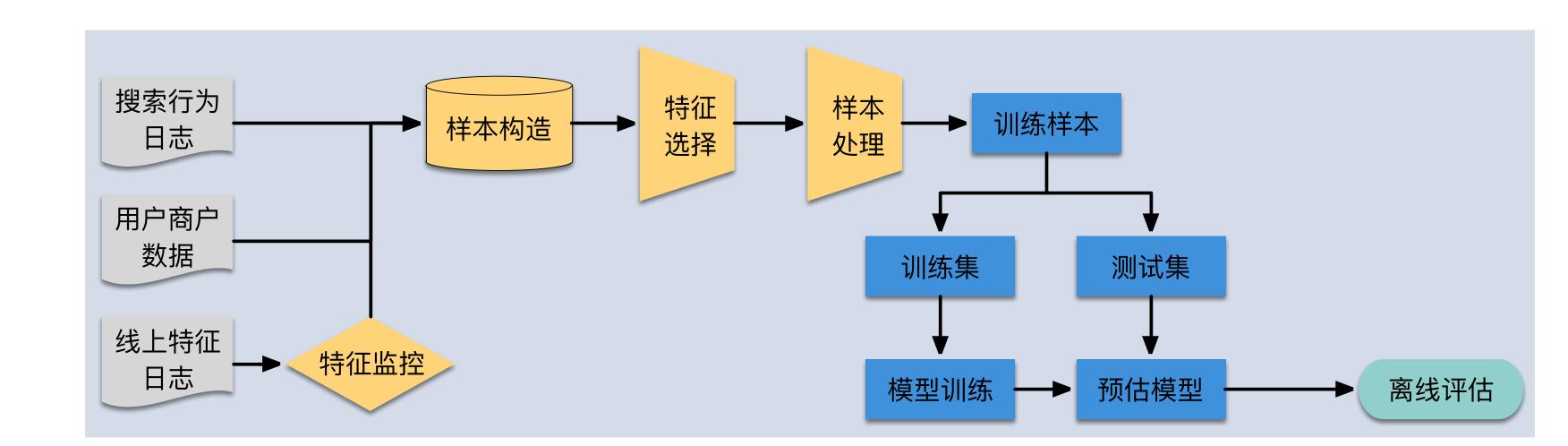
实时计算体系

模型训练

效果监控

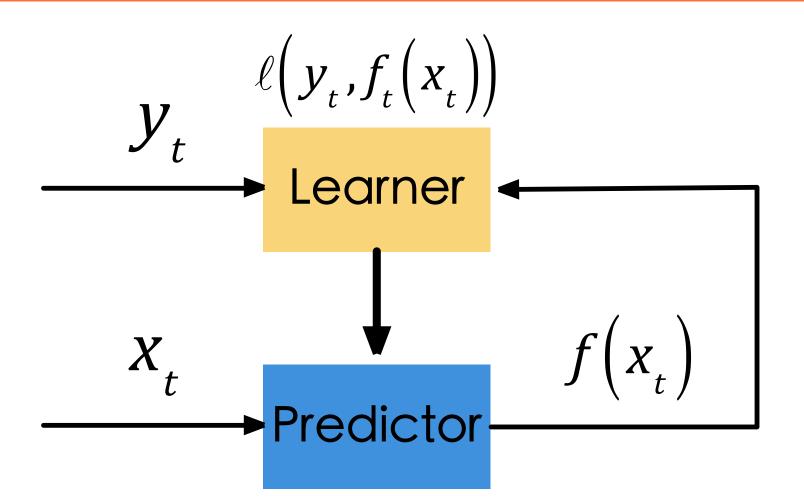
离线学习

- 时效性差
- 效率低
 - 每次全量数据
 - 不必要的数据落地
- 压力时间分布不均衡



在线学习

- 时效性好, 秒级更新
- 效率高
 - 每次处理新流入数据
 - 减少中间数据落地
- 压力时间分布均衡



For
$$t=1,2,...,T$$

Receive X_t

Predict $f_t(x_t)$

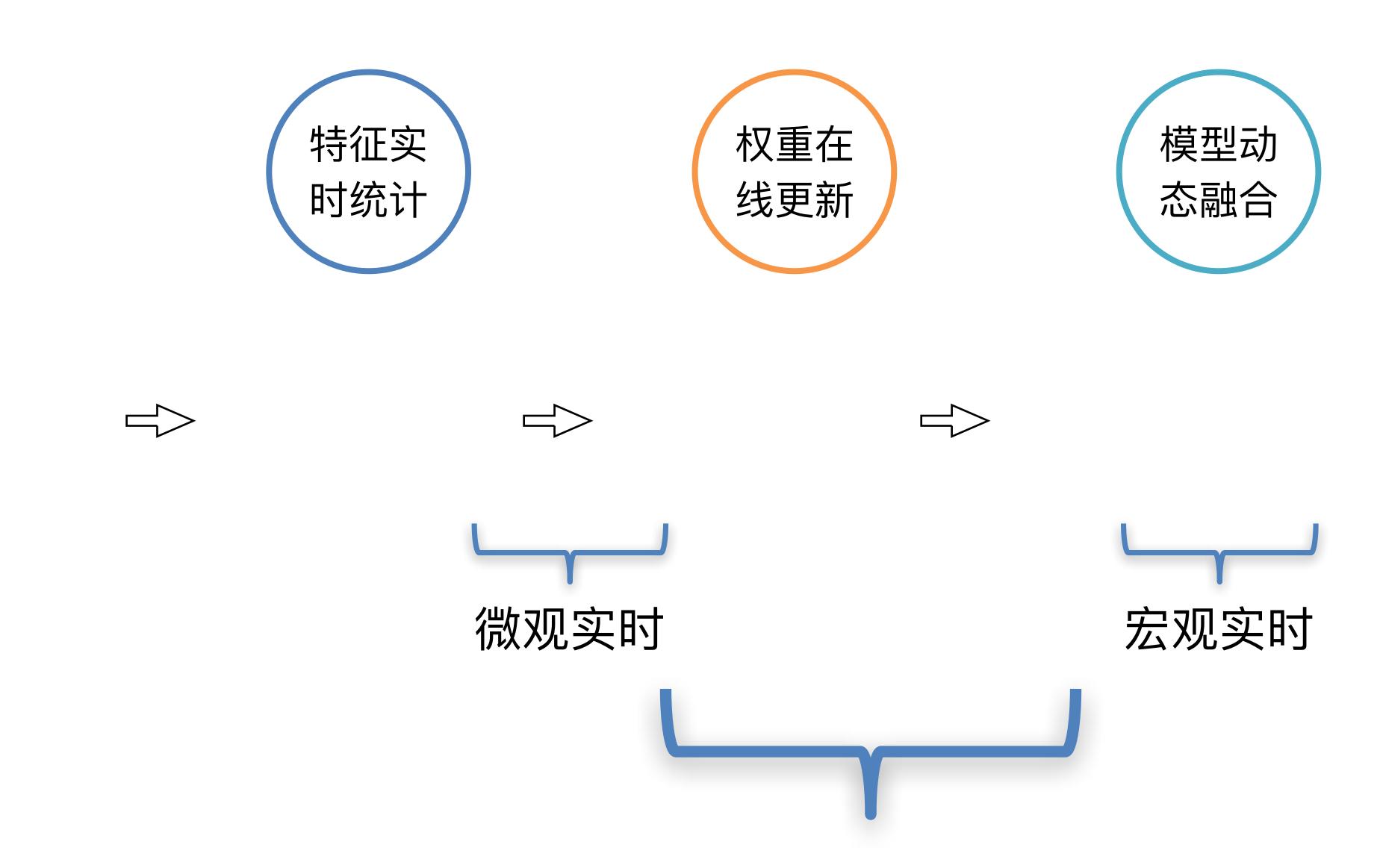
Receive Y_t

Suffer loss $\ell(y_t, f_t(x_t))$

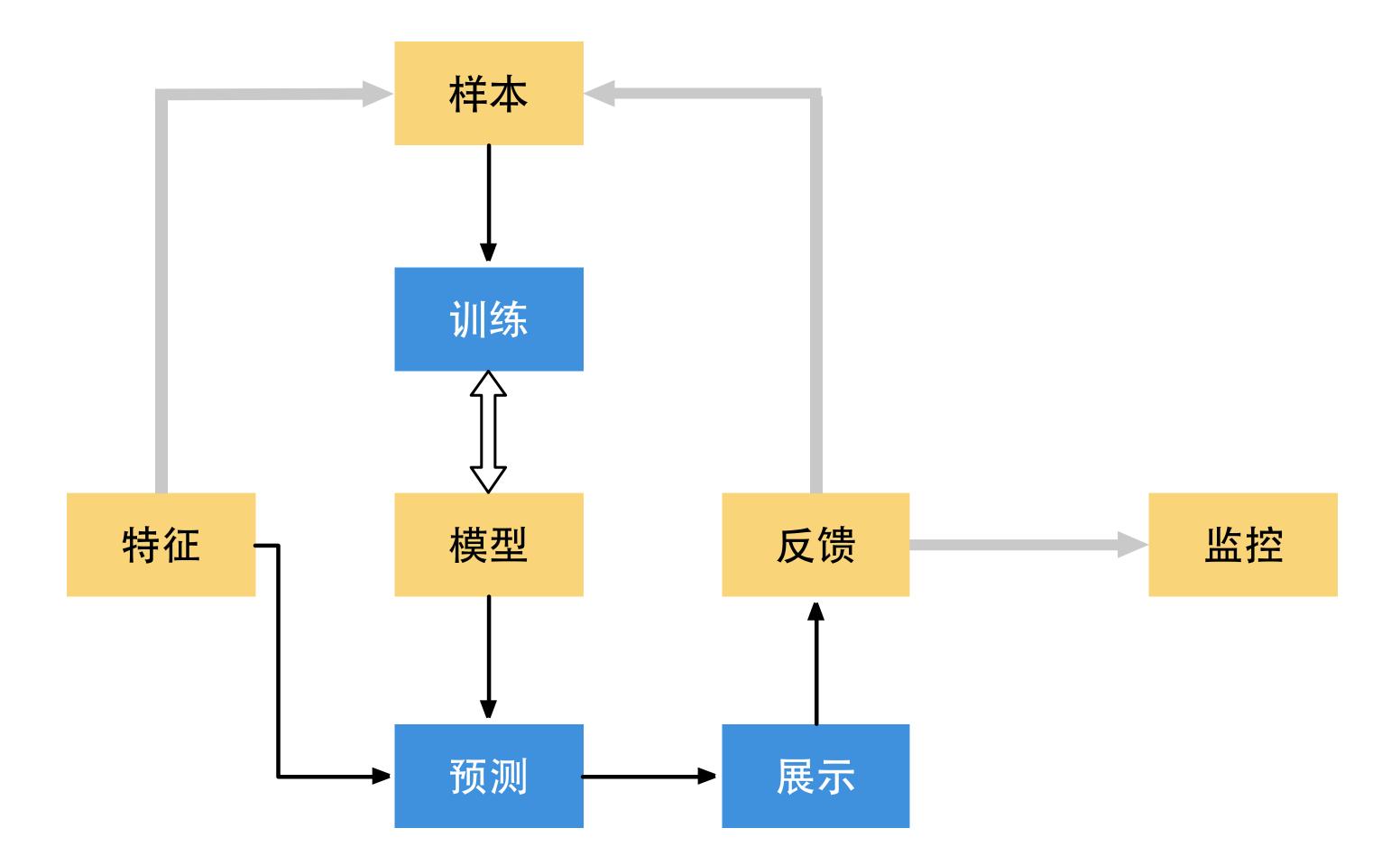
Update $f_t(x) \rightarrow f_{t+1}(x)$

Goal: To minimize

$$\sum_{t=1}^{T} \ell(y_t, f_t(x_t))$$



- 全链路端到端
- 海量权重更新
- 多种模型支持
- 实时效果监控



业务介绍

业务职责

业务框架

服务架构

业务特点

在线学习

狭义概念

广义实时

困难挑战

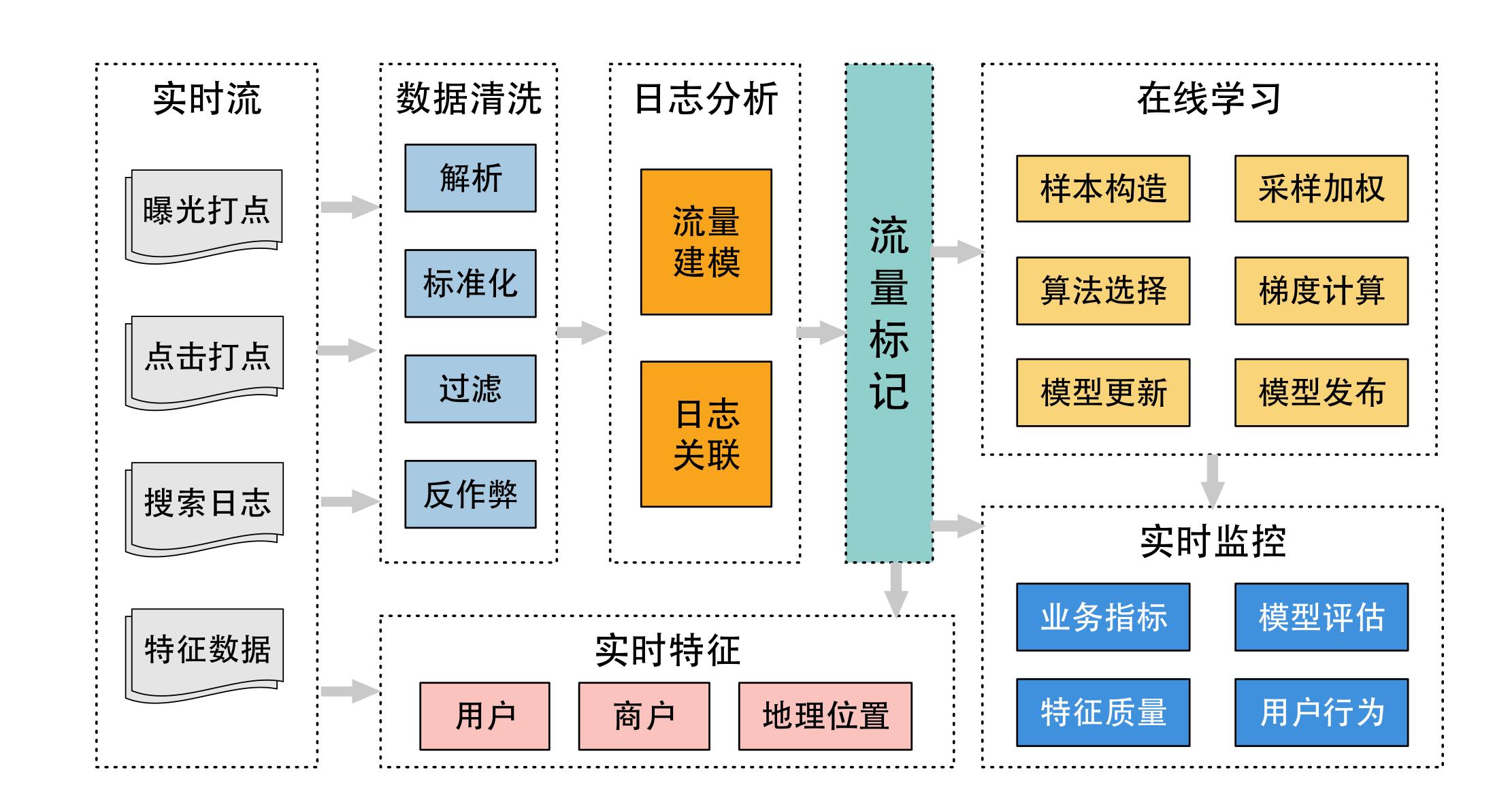
搜索实践

实时计算体系

模型训练

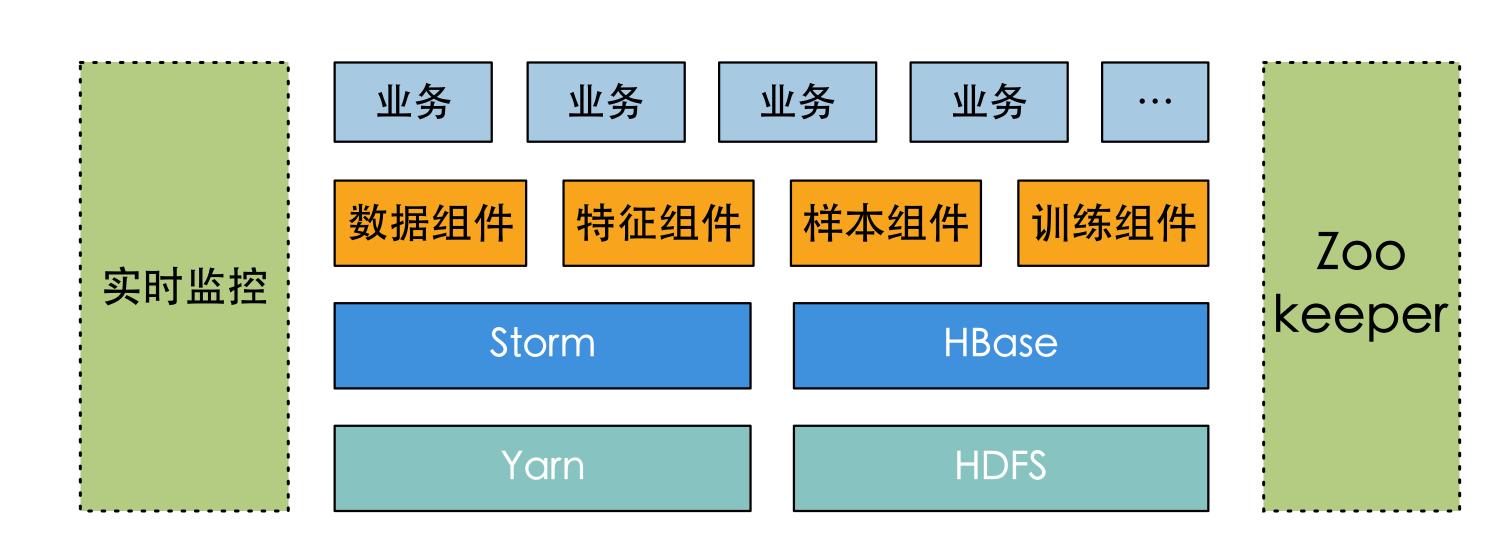
效果监控

实时计算体系

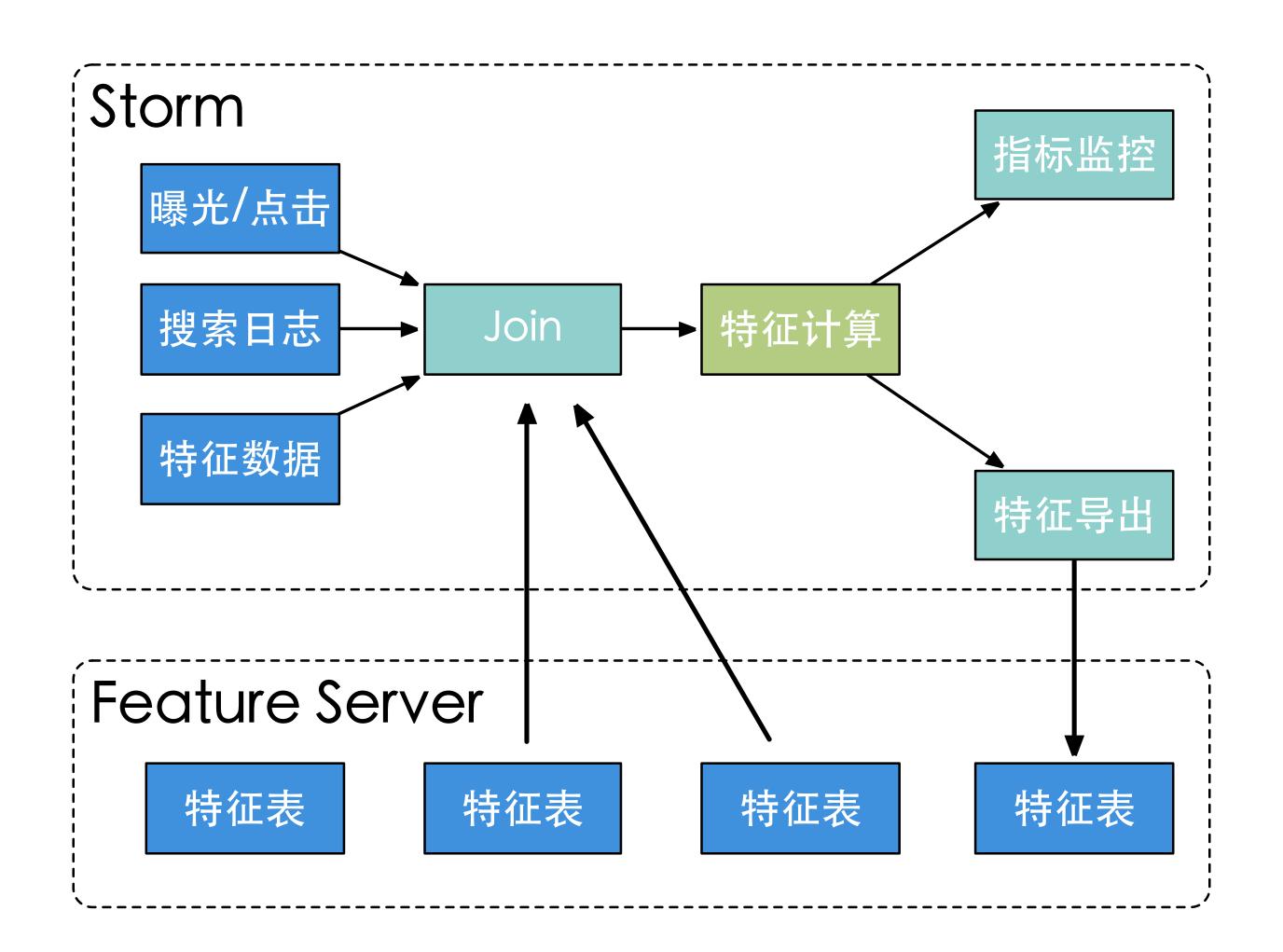


实时计算体系

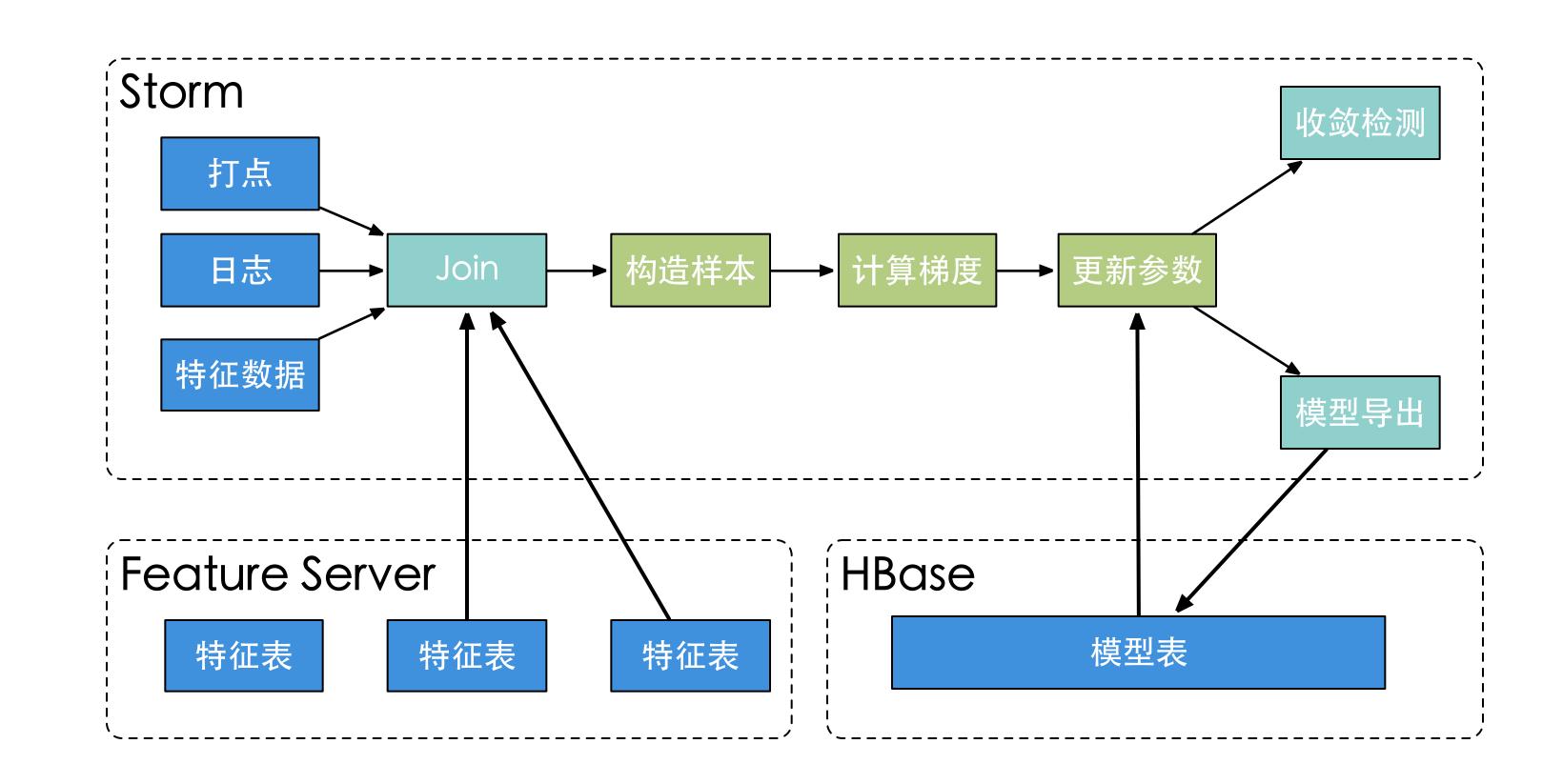
- 实时性
 - 用户行为发生到样本生成平均延迟10s
 - 端到端分钟级更新模型
 - 实时调整多模型融合权重
- 数据量
 - 每天处理亿级用户/商户/商品行为消息
 - · 峰值超过1万/s
- 支持自定义组件
- 支持可视化监控
- 广泛用于点评搜索推荐各项业务



- 特征值动态变化
- 实时统计
- 支持自定义插件
 - 实时点击率
 - 实时类别偏好

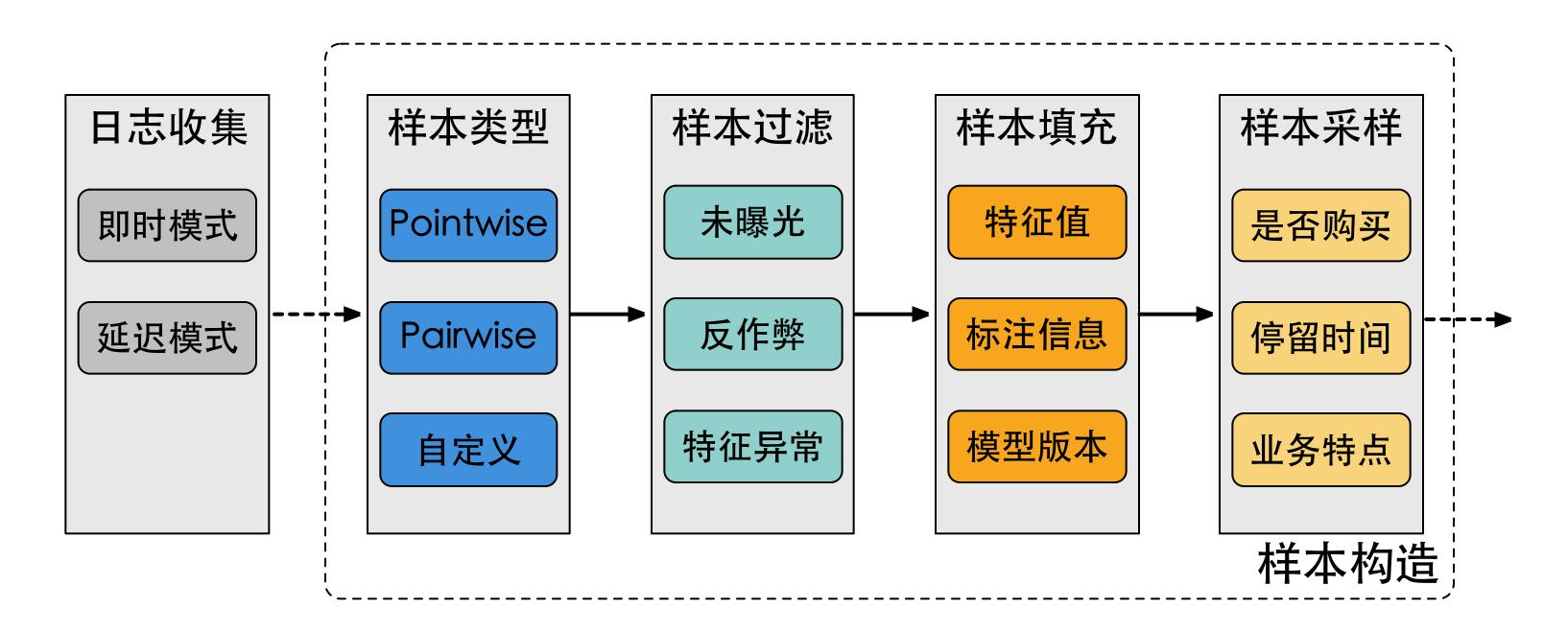


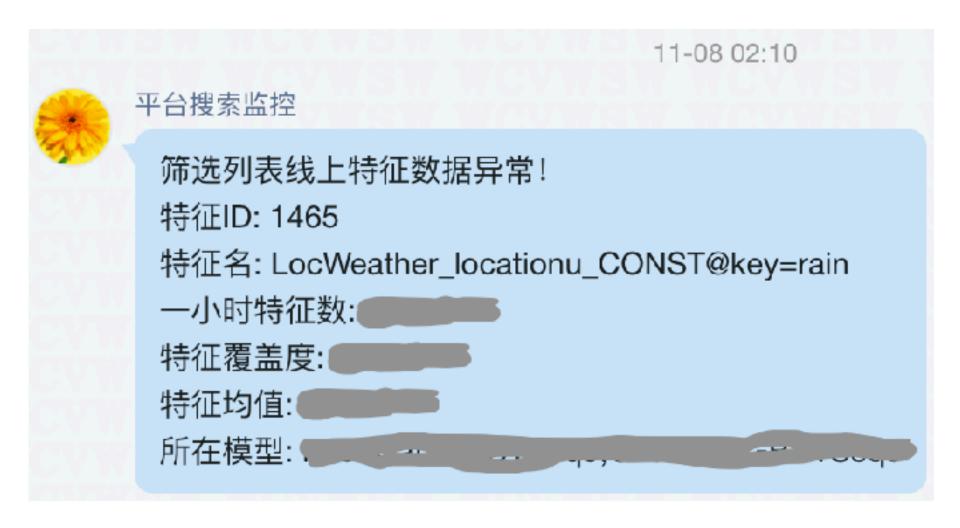
- 模型权重动态变化
- 数据流向动态配置
- 支持自定义插件
 - 样本构造
 - 梯度计算
 - 参数更新
 - 收敛检测
 - 模型导出



- 日志收集
 - 即时模式,实时发送
 - 延迟模式,有点击、购买或超时才发

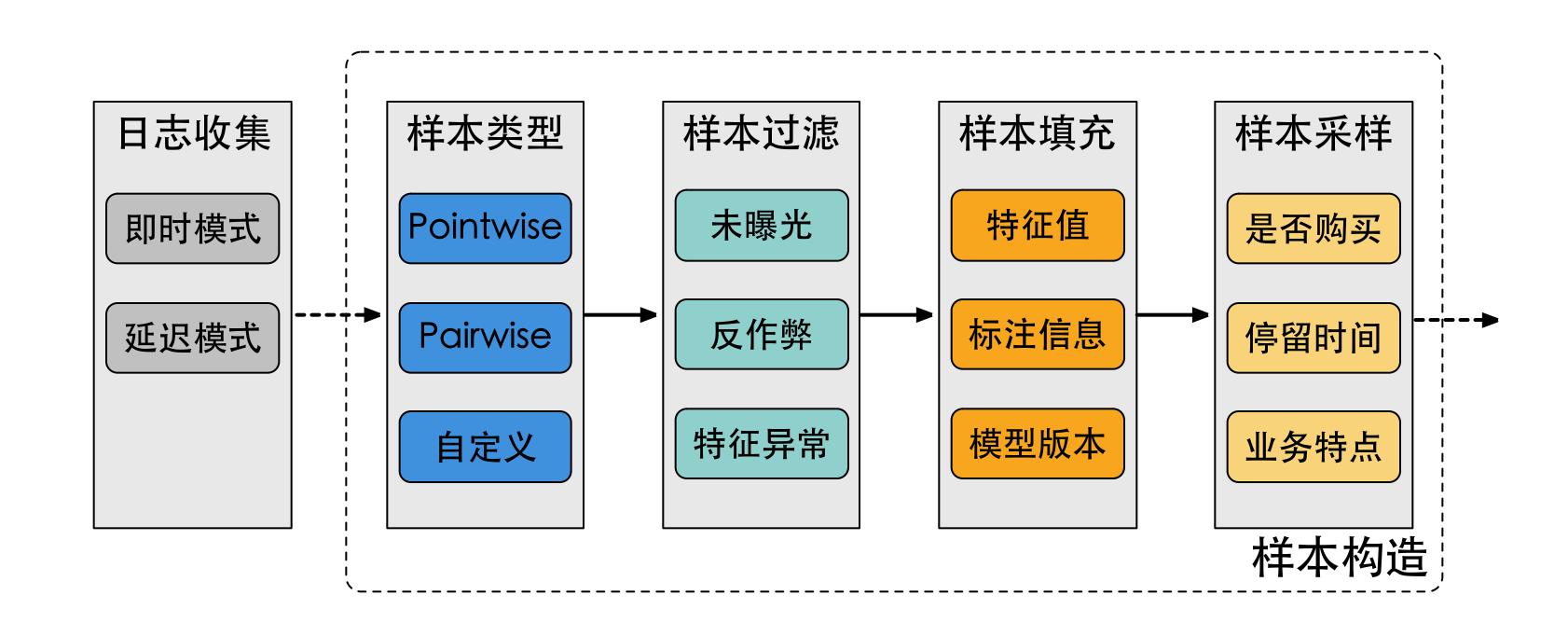
- 样本过滤
 - 常规过滤
 - 容错能力

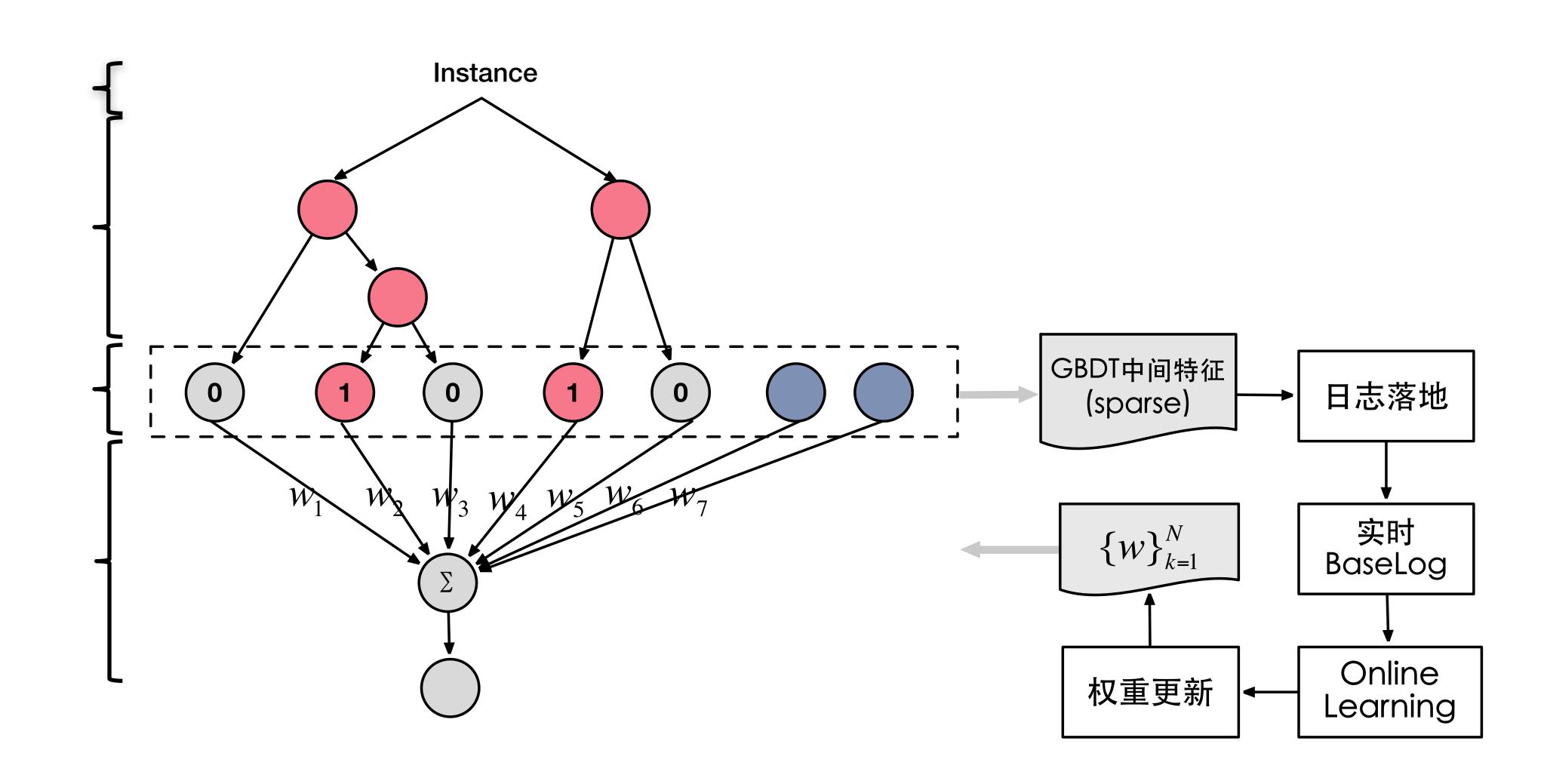


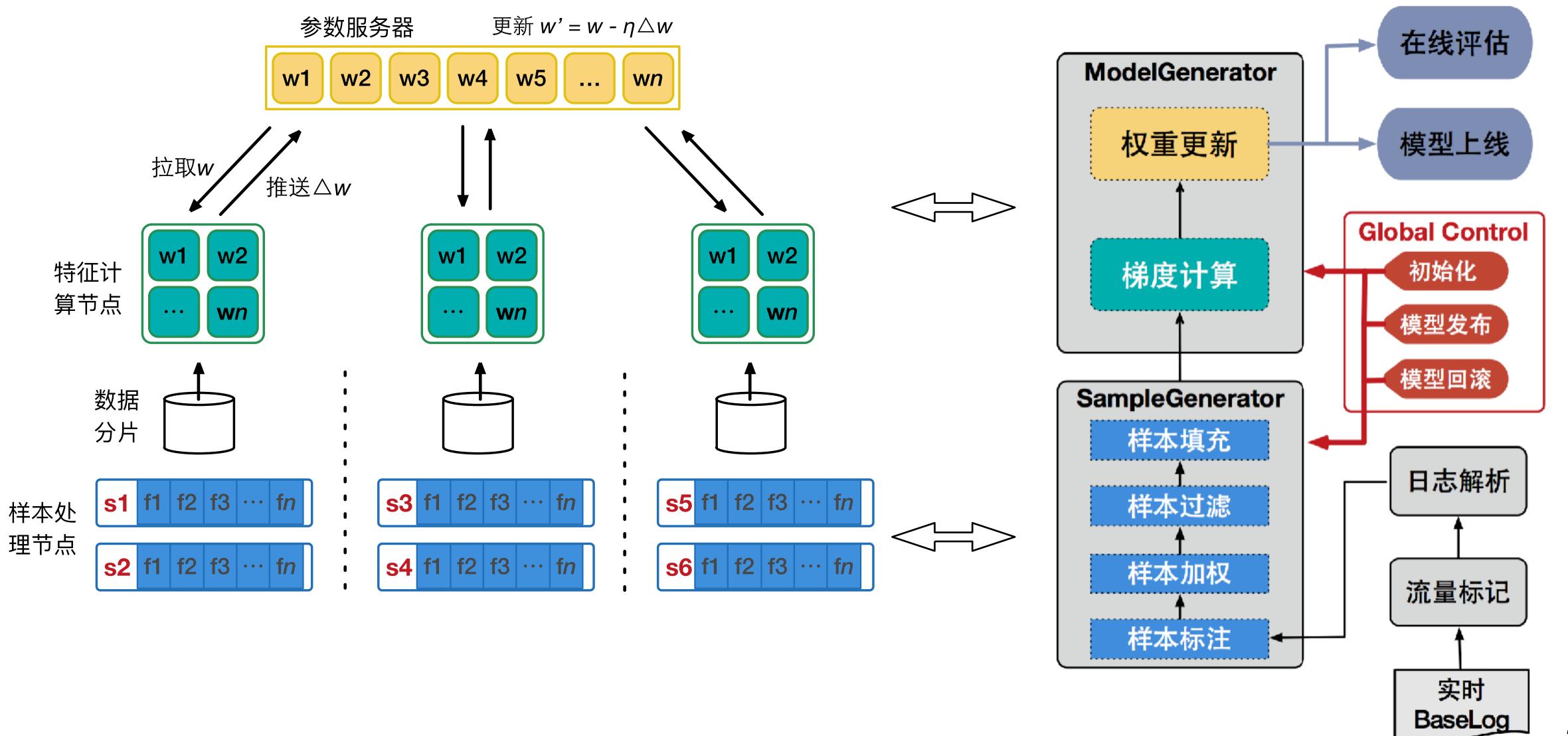


- 样本填充
 - 模型版本变化
 - 加入新特征

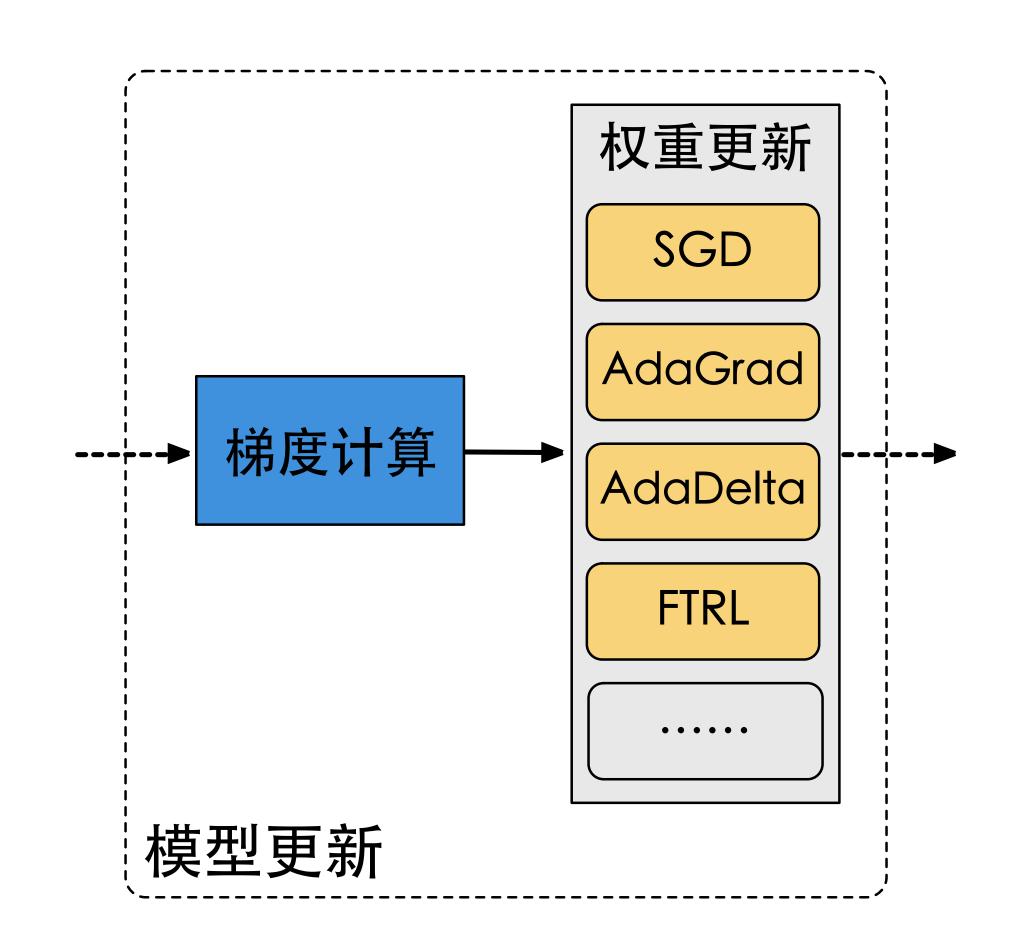
- 样本采样
 - 长尾/非长尾
 - 美食/非美食





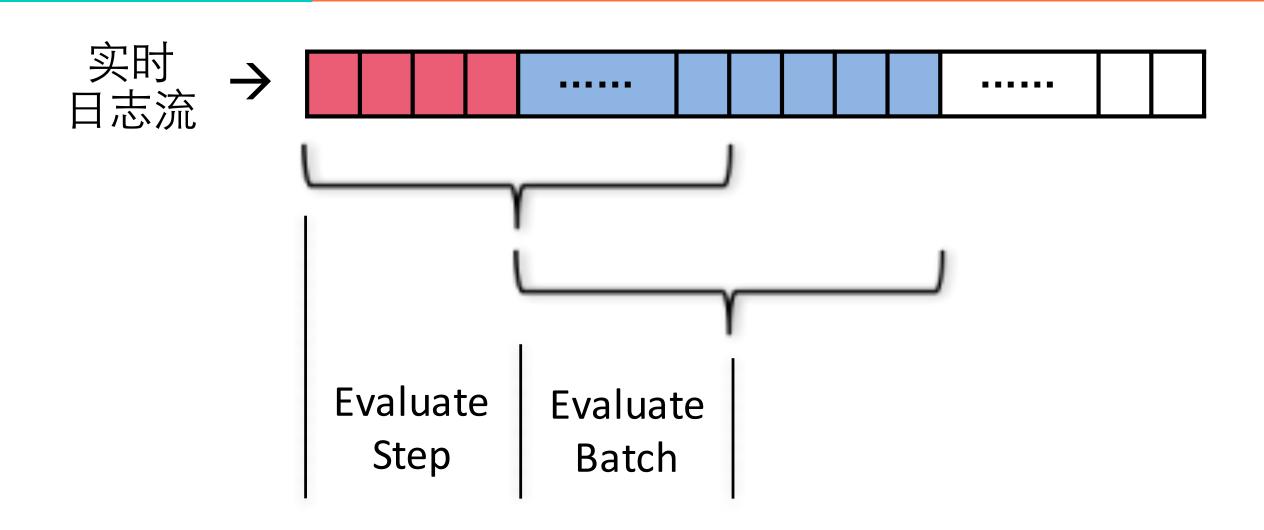


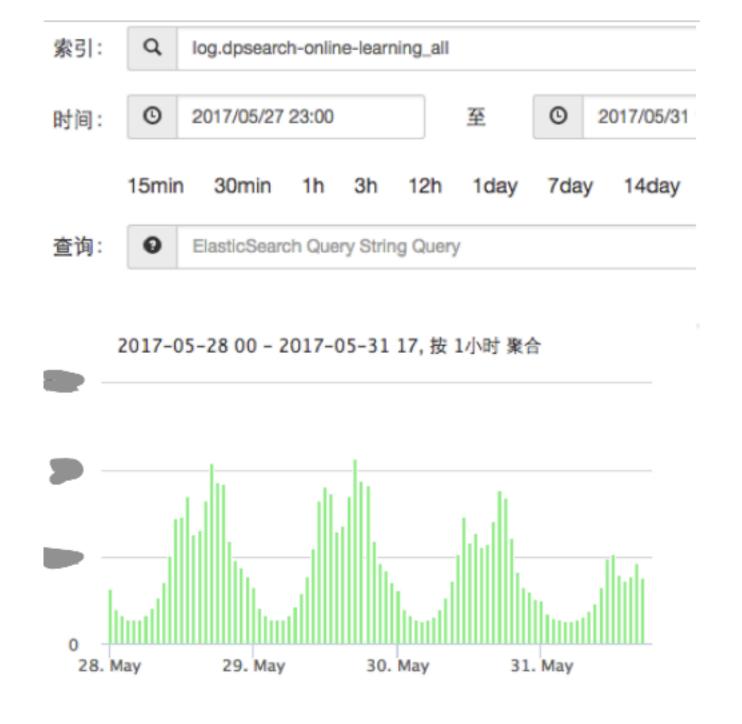
- SGD
 - 固定学习率,每维特征一样
- AdaGrad
 - 每维特征学习率不同
 - 学习率逐渐减小
- AdaDelta
 - 改进AdaGrad
 - 用一阶方法近似二阶牛顿法
- FTRL
 - 精度和稀疏度表现出色

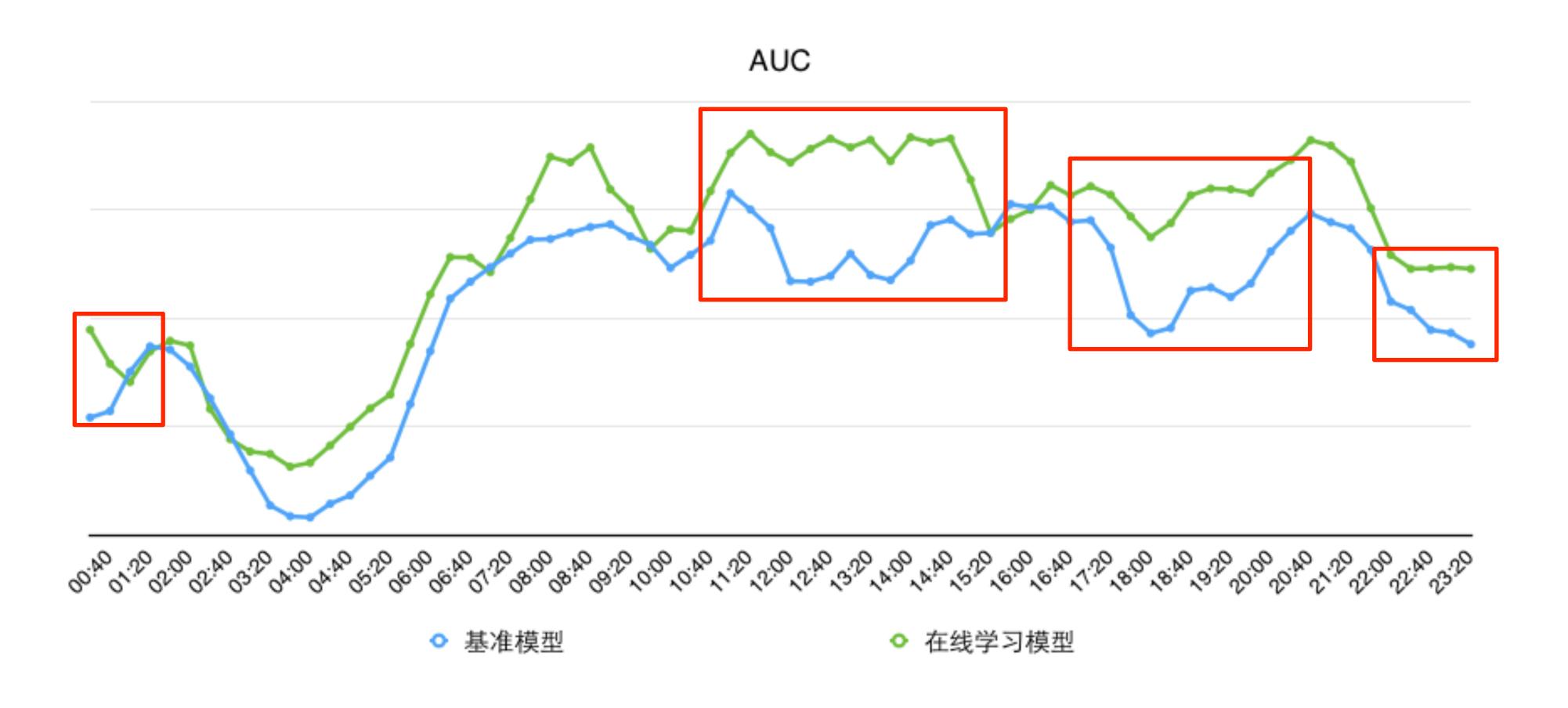


实时监控

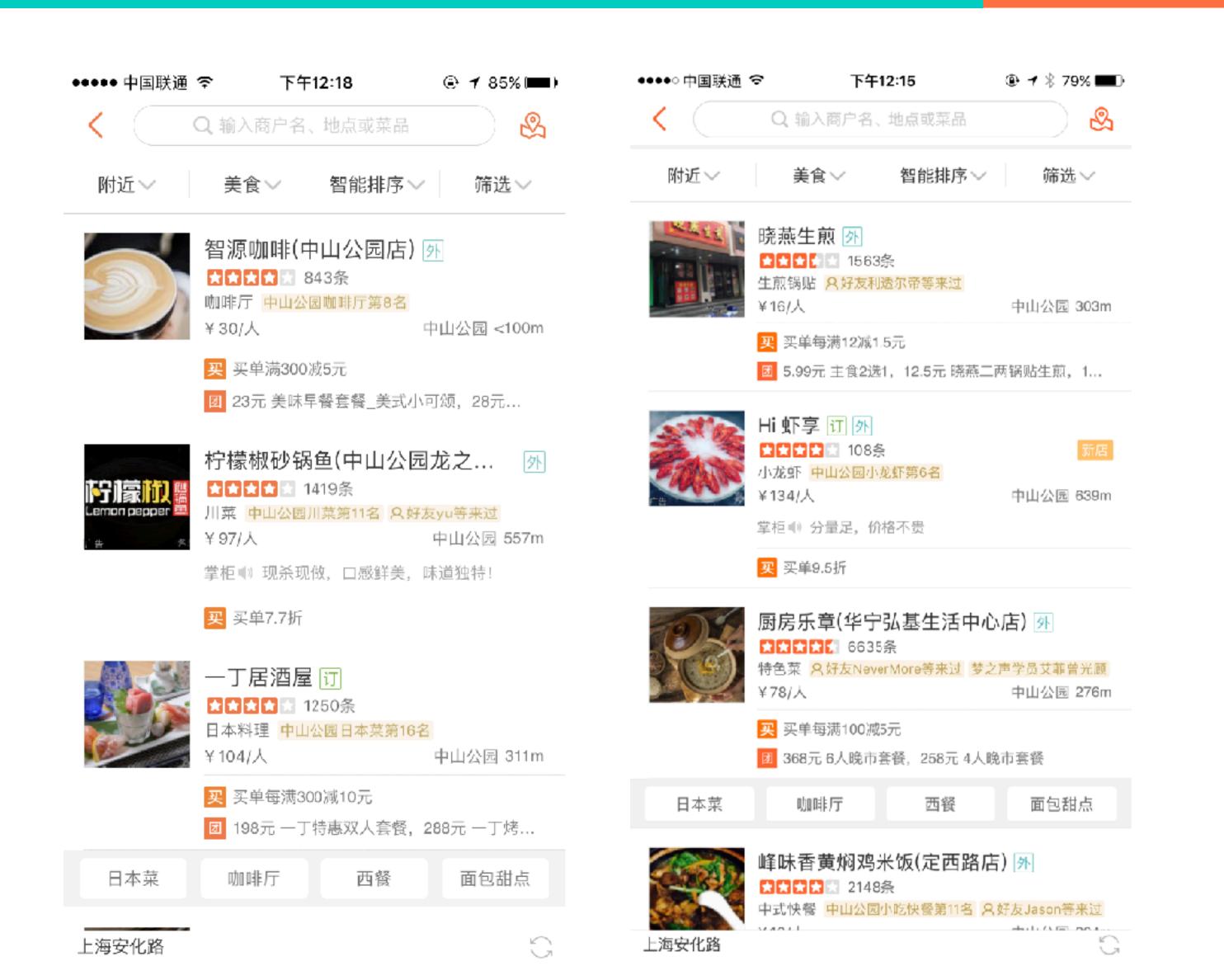
- 定长滑动窗口
 - 保证样本集大小固定
- 多种指标
 - Query维度
 - 样本维度







效果统计



到店餐饮PV点击率

2017/8/19

2017/8/18

2017/8/20

53%

51.5%

50%

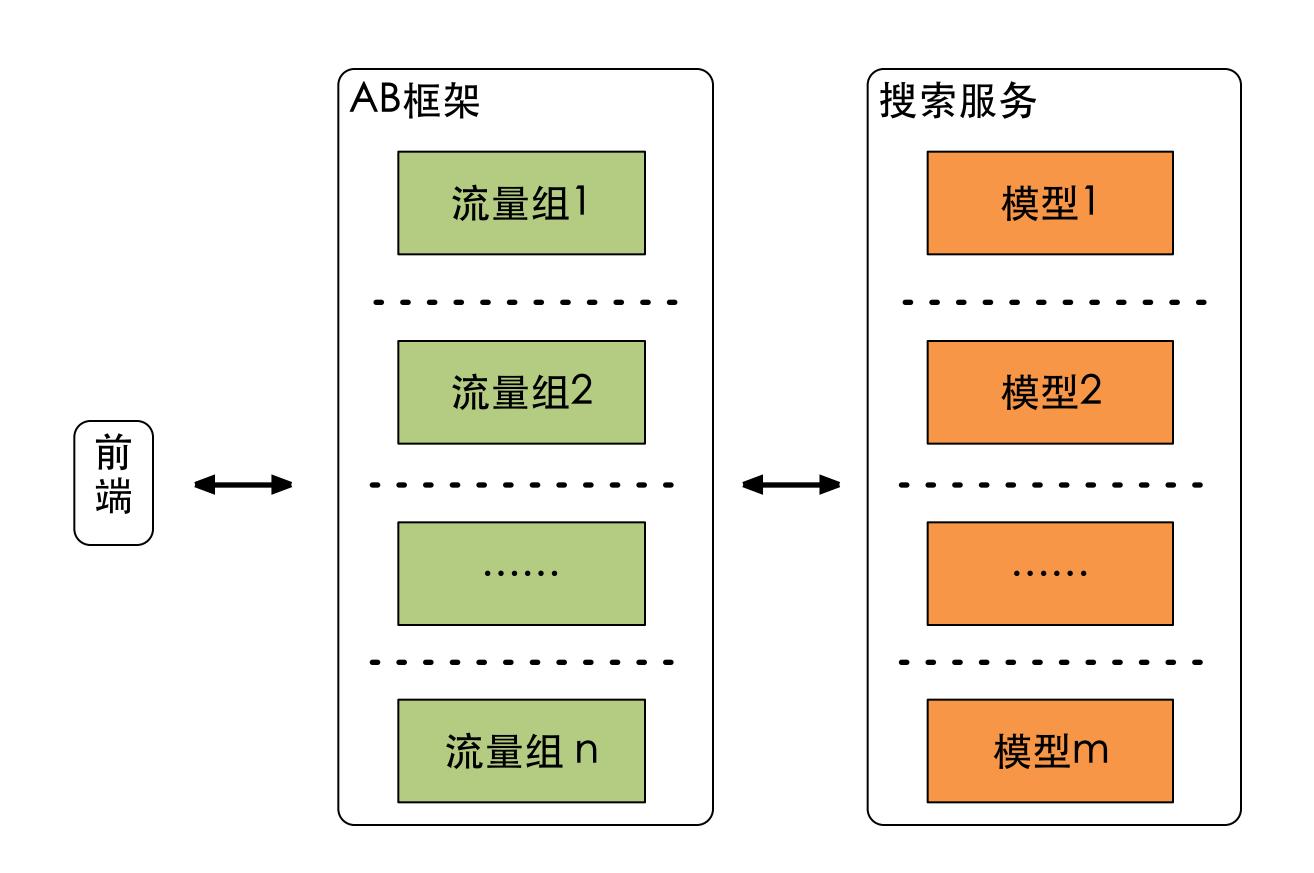
48.5%

47%

2017/8/16

2017/8/17

- 实时监控使得宏观实时成为可能
- 离线模型与实时模型融合
 - 离线模型,全局优化,精细预估长尾流量
 - 实时模型, 充分学习头部数据
- 不同流量组之间模型融合
- 动态调整模型覆盖流量组
 - 模型级别 Explore & Exploit



平台化

- 方便支持更多业务
- •流量接入、超参调整

模型多样

- 非传统在线学习
- •与深度学习结合

- EE策略优化
- •强化学习多模型更新

参考文档

- [1] H. Brendan McMahan, et al., Ad Click Prediction: a View from the Trenches, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2013)
- [2] Jeffrey Dean, et al., Large scale distributed deep networks, Proceedings of the 25th International Conference on Neural Information Processing Systems, p.1223-1231, December 03-06, 2012, Lake Tahoe, Nevada
- [3] H. B. McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems and L1 regularization. In AISTATS, 2011
- [4] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization. InCOLT, 2010 (理论性paper)
- [5] H. Brendan McMahan. A unified analysis of regularized dual averaging and composite mirror descent with implicit updates. 2011 (FTRL理论发展)
- [6] 赵沛霖 阿里 在线学习以及其在推荐系统中的应用
- [7] 孔东营 美团 Online Learning算法理论与实践

