

Shannon Systems

宝 存 科 技

Not covered 15%

Covered 85%

Shannon SSDs inside ~85% of internet companies

We power more than 50% of ecommerce databases

55%

or find your significant other...

Are you the 2%?

■ Currently using ■ Planning to use within 12 months ■ Not using and no plans

ODF

3D NAND Flash

- 96 layer NAND
- 4 bits/cell

512Gb per die 1TB per single BGA package

Source: WDC

5Th generation Shannon Direct-IO controller

Tailor-made FFSA controller

- 1 Million IOPS
- 36TB capacity
- micro-second access latency

Sharing by multiple Databases

Capacity and performance sharing

IO consistency

IO separation

Approach: IOPS limitation per instance

IO separation

Limit the maximum available resources for each applications

IO separation via streams

Source: Landsman, FMS2017

IO separation via streams

Standard SSD

Stream 1
Sequential
Stream 2
Sequential
Stream 3
Random

No Stream Separation

Single
Write
Stream

Blocks / Reclaim Units

Mixed data needs garbage collection to reclaim blocks

Higher Write Amplification

SSD With Streams

Separation of streams into different reclaim units

Separated data can be trimmed or self-invalidated to reclaim blocks

Lower Write Amplification

Source: Landsman, FMS2017

Networked SSDs

IO access across nodes or space is the key enabling component

Networked IO

- RDMA technology enables SSD sharing across nodes with minimum latency overhead
 - e.g. NVMeoF
- Proprietary software layer ensures IO determinism across space
 - Access latency becomes node agnostic
 - Storage pool is constructed across multiple nodes
 - SSD pool becomes HA (highly available)

Networked IO

IO access through high speed network via RDMA

IO consistency –RW separation

Maintenance window to guarantee read access latency

Deterministic read window

Maintenanc e window

Deterministic read window

Maintenanc e window

Maintenanc e window

Maintenanc e window

GC/WL, background scrub etc

IO consistency –RW separation

Pool multiple SSDs together via RDMA network

At any time, one copy exists for deterministic read IO

IO prioritization

Provide priority service for certain traffic

IO prioritization

Higher priority processing for IO from a particular application

Priority Read/write operations

IO atomicity

- IO (minimum size) sent to storage system
 - Success
 - Complete fail
- No intermediate state is allowed
- For example, Shannon Direct-IO PCIe Flash guarantees atomicity for any IO less than 32KB
- MariaDB supports atomic writes without using double write for improved performance.

Summary

1

SSD capacity/ performance admits resource sharing among applications 2

IO determinism elevates QoS

- separation
- prioritization
- atomicity

类 3

IO determinism is enabled via software-defined SSD

•Intelligence is offered in host SSD driver

4

Database applications can benefit substantially from better IO determinism.

Shannon Direct-IO™ PCIe Flash G4i

User Capacity

12.8TB

Access Latency

90/9us

IOPS
Random 4KB read/write

495/650K

上海宝存信息科技有限公司 Shannon Systems

0DF 2011