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Admission Controllers

AlwaysPullImages, DefaultStorageClass, 
DefaultTolerationSeconds, LimitRanger, 

NamespaceLifecycle, 
NamespaceAutoProvision, 

NamespaceExists, NodeRestriction, 
PersistentVolumeLabel, PodPreset, 

PodSecurityPolicy, Priority, 
ResourceQuota, ServiceAccount, 

SecurityContextDeny

Comm
only 
Used

ExtendedResourceToleration

New 
Added 
in v1.9



Admission Controllers: 
Disadvantages

– Must compiled together with Kubernetes binaries; 

– Hard to customized by maintaining a fork;

– Not dynamic:

• Only configurable with --admission-control flag;

• Re-deploy (may have no authority);



Use Cases
• Adding new nodes to the cluster, but don’t want them get scheduled by default. (Easier than 

adding taints and tolerations, pod affinity/anti-affinity)
– Want to reserve resources for dev/test for a team, for a single service;

– Testing GPU nodes;

– Temporary/Unstable nodes
• Node flapping between Ready/NotReady with PLEG issues (#45419);

• Node maintainence;

• Time-based Resources Allocation (Day and Night, Holidays, etc);

• Enforcing all container images to come from a particular registry, and prevent other images;

• TPR (Third Party Resources);

• ……

Dynamic Admission 
Control



Initializers And Web Hooks

• Initializers

• Webhooks

– HTTP callbacks to receive admission requests;

– Not allowed to mutate the admission request in any way;

– Must support TLS;

– Better performance than Initializers;



What Are Initializers

• Similar to admission controller plug-ins, but different;

• A list of pending pre-initialization tasks (uninitialized), stored in 
every object’s METADATA (e.g., “AddMyCorporatePolicySidecar”);

• A customized controller;



Initializers: Status Quo

• First introduced in v1.7 (alpha). Only enabled in API.

– requested by using the query parameter, "?includeUninitialized=true"

• Enabled in CLI in v1.8 (PR #50497). 

– New global flag "--include-uninitialized";

– Add flag to kubectl annotate, apply, edit-last-applied, delete, describe, edit, 
get, label, set;

– Ignored by default only if the names of the objects are provided.



CLI Usage
annotate/edit-last-
applied/delete/edit
/label/get/set xyz

apply describe

Default Value false --prune true
--all=true true true true

--selector=xyz false false false
Explicit set flag

• --all
• include the uninitialized objects by default unless explicitly set --include-uninitialized=false

• --selector
• does not include the uninitialized objects by default unless explicitly set --include-

uninitialized=true



How Initializers Work



Enable Initializers

• Alpha feature. disabled by default.

• --admission-control=Initializers flag when starting kube-apiserver;

• --runtime-config=admissionregistration.k8s.io/v1alpha1 when 
starting kube-apiserver;

• --feature-gate=Initializers=true since v1.8;



Initializers: Under The Covers

• Not scheduled directly?

• Saved on APIServer?

• Invisible for schedulers and controller managers?

• Initializers block Create requests

• Parallel? Too slow? (API support for partial orders among 
initializers #50714)

?includeUninitialized=true



Initializers: Under The Covers 
(Cont.)
• Allow administrators to bypass initialization by setting an empty 

initializers list;

• sub-resource action should be denied until the object is initialized?

• Mirror pods are exempt from initialization;

• Pending initializers are SORTED!!!



PodPreset VS Initializers

• PodPreset: 

– injects certain information into pods (use label selectors) at creation time.

– The information can include secrets, volumes, volume mounts, and 
environment variables;

• Intializers:

– Dynamic and pluggable;

– More customized; For all kinds of objects;

– Easy to use client-go to handle common actions;



Developing Your Own Initializer

• List/Watch functions specifying IncludeUninitialized=true and 
targeting all namespaces

• Use a PATCH to perform the update;

• Set empty pending initializers to skip blocking initializer controller;

• Make sure your initializer doesn’t go down and handles the objects 
quickly;

• Sample Gist



Some Warnings

• Never forget about the ORDER!!!

– matches metadata.initializers.pending[0]
– Ensure PVL controller is next pending initializer before labeling the 

PV (#56831)

• Cautious with the powerful initializers.  

• Not everyone should be required to write an initializer.

• Uptime of Initializers: resources will get stuck in “uninitialized” state indefinitely



Q & A


