
How we Test a Distributed System

LiuQi | PingCAP

About me
● LiuQi / co-founder & CEO @ PingCAP
● Working on TiDB / TiKV projects

Shit happens
● Our process is paused by VM
● Our process is killed by signal
● Network

○ Slow(high latency)
○ Connection reset by load balancer(cloud)
○ DNS Fail
○ Bandwidth full by other process
○ Isolation

● CPU is burning by other process
● Disk IO is burning by other process
● Disk space is burning by other process
● Corrupt file/disk/machine/DC

Are you ready to handle those shits ?

Are you ready to handle those shits ?

Always be prepared.

Are you ready to handle those shits ?

Test everything.

Or

When I mean everything...
● Unit tests

○ Coverage
● Performance tests

○ Bench Whole system
○ Bench Each layer
○ Bench Functions
○ Compatibility tests

● Integration tests
● Fuzz tests

Automate everything.

Well, still not enough
● Profile everything

○ Function
○ Disk IO
○ Network
○ CPU

● Enable profiling even online
○ May be a once-in-a-lifetime chance. CPU is burning but we may never know why.

● Design for testing or Die without good tests

Hold on, who is the tester?
● Testing is owned by the entire team. It is a culture, not a process.
● Quality comes from solid engineering.
● Stop talking and go build things.
● Don’t hire too many testers.
● Are testers software engineers? Yes.
● Hiring good people is the first step. And then keep them challenged.

Random kill
What doesn’t kill you makes you stronger.

Error injection
If there is an error, make that error happen again.

Fault injection
If there is a failure, make that failure happen again.

Event order
If there are ordered events, reorder.

Do not tell me you are right, prove it.
AWS: Use of Formal Methods at Amazon Web Services

Do not tell me you are right, prove it.
The Most Frequently Asked Question On learning about TLA+:

Q: “How do we know that the executable code correctly implements the verified
design?”

A: The answer is that we don’t.

Why we need a proof ?
● Formal methods help engineers to get the design right, which is a

necessary first step toward getting the code right.
● If the design is broken, the code is almost certainly broken.

Why we need a proof ?

● Formal methods help engineers to find strong invariants, so formal methods
can help to improve assertions, which help improve the quality of code

TLA+ in TiDB

● Transaction model is based on Google Percolator.

We make lots of optimizations. So

● Transaction model should be proved by TLA+.

A proof is not enough.
Create a daemon that checks all the constraints.

Found several serious RocksDB bugs:

https://github.com/facebook/rocksdb/pull/2799

https://github.com/facebook/rocksdb/pull/3017

Let’s talk about fail point
● Fail points are used to add code points where errors may be injected in a user

controlled fashion.

Fail point
● Fail point in freebsd looks like:

fail-rs
● The idea came from freebsd
● Built for rust

fail-rs: why did we build it?
● Make failure injection more precise.
● Make writing test cases easier by injecting failure when invoking the libraries

API.

fail-rs: how does it help?
● We use it in our unit tests to test known cases.
● We wrote different scenarios to test it continuously and randomly.

fail-rs: how does it work?
● Design overview

○ Use the Rust macro to make injection easy and completely
optimised for release.

○ Basically a global map that stores the failpoint name and
errors to be injected. When program runs into failpoint, it
checks if there is any action, and then execute it.

fail-rs
● An example: we want to simulate database write failure or write with high

latency

○ write=return(“err”) to simulate write failure
○ write=sleep(1000) to simulate busy IO

But i am a go programmer?
● gofail: created by CoreOS
● Used to test etcd.
● Also used in TiDB

But i am a go programmer?
● Are you still fighting with error handling ?

if err != nil {

}

Does it really work if error happens ?

if err != nil {

// handle error

// is the current branch coverd by your test?

}

gofail in TiDB

Jepsen
● Run Nemesis to disturb a cluster
● Record request and response
● Verify the linearizability of history

Focus on network and linearizability testing

TiDB with Jepsen
● parts: network partition
● start-stop: send SIGSTOP to some nodes
● start-kill: send SIGKILL to some nodes

Each time when there is an update in the TiDB code,
we will internally trigger CI to execute Jepsen tests

Namazu
● Filesystem Inspector - Use Fuse to delay or inject faults
● Ethernet Inspector - Use iptables to drop or delay packages
● Process Inspector - Change scheduler attributes

Namazu

Inside TiKV
● Random scheduler

○ Homemade chaos monkey
● Always Check Sum / Hash

Fuzzing tools
● Is it really necessary?

Fuzzing tool: american fuzzy lop

File system is stable, until

Fuzzing tools
● Random Query Generator

○ https://launchpad.net/randgen
○ Found 7 bugs of TiDB
○ run desired test:

● ./gentest.pl --dsn
dbi:mysql:host=127.0.0.1:port=4000:user=root:database=test --
grammar=conf/optimizer_subquery_portable.yy --gendata --
thread=1

Schrodinger
● Use configuration to define cases
● Run cases in Kubernetes
● Run Nemesis to disturb a cluster

○ Reorder network packages
○ Isolate node and network partition
○ Kill / Restart / Pause node randomly
○ Slow down IO operation / Return error
○ More…...

● Validate cases
● Web visualization

Keep calm because Shit still happens
● Our process is paused by VM
● Our process is killed by signal
● Network

○ Slow(high latency)
○ Connection reset by load balancer(cloud)
○ DNS Fail
○ Bandwidth full by other process
○ Isolation

● CPU is burning by other process
● Disk IO is burning by other process
● Disk space is burning by other process
● Corrupt file/disk/machine/DC

Thanks

We are hiring!

Q&A

