
Application performance
analysis

Using Perf with PMU event, PEBS, LBR and Intel PT technologies

 Jin Yao

Linux “perf” overview

2

Perf User tools

Linux Kernel

Perf_events

PMU
BTS/
LBR

SW
Events/

Trace

User

Kernel

PMU, tracepoint, tracing framework

 Integrated into the Linux kernel

 Including user tools

 Maintained by Linux community

 With Intel contributions

 Generic: x86, other architectures

 Aims to abstract the hardware

 Supports software events

 Aims to be easy to use

Deployment

 Part of the core Linux kernel

 Fast development

 Not a separate driver

 Kernel version dependent, tightly integrated
(some backports)

 Provides user interface (syscall + ring buffer)

Perf build notice

 Rebuild perf binary if use a new kernel

 cd tools/perf; make

 Make sure the lib installed correctly

perf events I (perf list)

branch-instructions OR branches [Hardware event]

branch-misses [Hardware event]

bus-cycles [Hardware event]

cache-misses [Hardware event]

cache-references [Hardware event]

cpu-cycles OR cycles [Hardware event]

instructions [Hardware event]

ref-cycles [Hardware event]

Low Processor Utilization
System Paging
Context Switches High
I/O Latencies High
I/O Bandwidth Low
Application Execution Serialized

Resolve with System or Application Tuning

100% Processor Utilization
Processor stalls
Branches mispredicted
Code or Data Misaligned

Optimize with Micro-architecture Level Tuning

In
te

ra
c

ti
o

n
s
 b

e
tw

e
e

n
 l
e
v
e
ls

Tuning Level Interactions

Data Collection Techniques

• Sampling
– Collection of data based on the occurrence of a

particular event such as a timer or interrupt

– Example: Perf (perf record)

• Tracing
– Getting log of path of application

– Example: Perf (Intel PT)

• Instrumentation
– Insertion of data collection instructions in the source

code or object code level

• Simulation

A “mgen” workload example

 Generate Remote Memory Access for ~10s on SKX

 mgen -a 0 -c 28 -t 10 (memory allocated on node0, thread runs on cpu28)

Overview (by perf stat)

 perf stat -e cycles,instructions ./mgen -a 0 -c 28 -t 10

 IPC = Instruction Per Cycle (0.01, very bad data)

 perf stat is not sampling

Who eats cycles? (by perf
record/report)

 perf record -e cycles ./mgen -a 0 -c 28 -t 10

 perf report --stdio (buf_read eats 98.83% cycles)

 perf record is sampling.

Which instruction eats cycles? (by
perf annotate)

 perf annotate --stdio

 Is “inc %ebx” take 99.97% cycles in buf_read? No!

PEBS (Precise Event)

 no p - arbitrary skid

 :p - constant skid

 :pp - requested to have 0 skid (Intel PEBS events)

 :ppp - must have 0 skid (only special case)

 Run perf record with precise option again

 perf record -e cycles:pp ./mgen -a 0 -c 28 -t 10

 If only perf record <app>, default is -e cycles:ppp

PEBS (Precise Event)

 perf annotate --stdio

 Why instruction at 417e93 takes 99.69% cycles in buf_read?

Memory load of 417e93 (by perf c2c)

 99.69 : 417193: mov (%rdx), %rdx

 Why memory load so slow? Not hit in LLC? Not hit in local
memory? Cache-line false-sharing issue?

 perf c2c record ./mgen -a 0 -c 28 -t 10

 perf c2c report --stdio

 c2c: cache to cache – Detect False-Sharing cache-lines.

 Based on Intel load latency facility.

 Memory access of the access

 Type of the access (e.g. remote memory hit?)

 Latency (in cycles) of the load access

What’s False-Sharing?

sum_a re-read x from memory even though modification of y is
irrelevant.

What data address hit by 417e93 (1)

 c2c can do more than False-Sharing analysis

 perf c2c report –stdio (part of output)

What data address hit by 417e93 (2)

 perf c2c report –stdio (part of output, actually many 417e93 entries)

 417e93 generates a lot of remote memory access and almost no
local or remote LLC hit (not false-sharing issue).

Timed LBR (Last Branch Records)

 Sampling + Tracing (h/w saves latest N branches to buffer)

 Tell us the cycles of code block between 2 branches.

Execution of program

Sample using
Performance Counter

FROM TO CYCLE
S

123 456 5

…

Log LBRs at sample point
Support 32 entries on SKL

LBR sampling

Cycles of hot code block

 perf record -b -e cycles:pp ./mgen -a 0 -c 28 -t 10

 perf report --branch-history --stdio

 Yellow is TO of branch X (LOOP1), green is FROM of branch X+1 (jb)

 440 cycles is for code block from LOOP1 to jb

What is Processor Trace (PT)?

• Intel PT is a hardware feature that logs information about
software execution

• Available in Skylake, Goldmont, … Broadwell also, but has
many limitations and is slower

• Supports control flow tracing. Decoder can determine exact flow
of software execution from trace log

 Target <5% performance overhead. Depends on processor
generation and usage model

• Can store both cycle count and timestamp information

22

Intel® Processor Trace Components

Ring0 Agent
(OS, VMM, BIOS,

Driver, …)

PT packet log
(per logical processor)

Intel PT-
enabled Tools

Runtime data, including:
• Map linear-address to image files
• Map CR3 value to application
• Log module load/unload and JIT info

Binary
Image Files

PT packet log, binaries, and software runtime data are used
to reconstruct the precise execution flow

Intel
CPU 0..n
Intel PT HW

Configure &
enable Intel PT

Intel PT
Software
Decoder

23

Branch timestamp (by perf PT)

 perf record -e intel_pt//u ./mgen -a 0 -c 28 -t 10

 perf script --ns -F time,cpu,sym,ip,srcline

Other Tools - NumaTOP

 NumaTOP (runtime memory locality characterization on NUMA system)

 http://01.org/numatop

 https://github.com/01org/numatop.git

Other Tools – LKP-tests

 LKP-tests (Linux kernel performance test tool)

 Open source tool by Intel:

https://github.com/01org/lkp-tests.git

 Framework to run benchmarks

Integrated ~80 benchmarks/test suites

Flexible mechanism to configure various parameters

Integrated ~40 monitors to monitor resource usages and statistics

• Framework for performance analysis

• Can be set up in CI environment (e.g. 0-Day CI), used for
running benchmark and reproducing regression

References

Perf C2C:

https://joemario.github.io/blog/2016/09/01/c2c-blog/

LBR doc:

http://lwn.net/Articles/680985/

http://lwn.net/Articles/680996/

Perf PT doc:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Docu
mentation/intel-pt.txt

Adding processor trace to Linux
https://lwn.net/Articles/648154/

