Application performance
analysis

Using Perf with PMU event, PEBS, LBR and Intel PT technologies

Jin Yao

RSP &

Linux “perf’ overview

Perf User tools
User
Perf events
Kernel -
SW
Events/ PMU BTS/
LBR
Trace
Linux Kernel

([

|| Il

35 (T2

EEETrERY

ll.l’.

PMU, tracepoint, tracing framework

« Integrated into the Linux kernel
- Including user tools

« Maintained by Linux community
- With Intel contributions

« Generic: x86, other architectures

« Aims to abstract the hardware
« Supports software events
« Aims to be easy to use

Deployment

Part of the core Linux kernel

Fast development

Not a separate driver

« Kernel version dependent, tightly integrated
(some backports)

« Provides user interface (syscall + ring buffer)

intel) TEIE T A

RSP &

Perf build notice

. Rebuild perf binary if use a new kernel
« cd tools/perf; make
« Make sure the lib installed correctly

@]lnyao@skl ~/skl-ws/perf-dev/Ick-4190/acme... ~ — O X

perf events | (perf list)

branch-instructions OR branches [Hardware event]

branch-misses [Hardware event]
bus-cycles [Hardware event]
cache-misses [Hardware event]
cache-references [Hardware event]
cpu-cycles OR cycles [Hardware event]
instructions [Hardware event]

ref-cycles [Hardware event |

Tuning Level Interactions

Interactions between levels

A

<

Low Processor Utilization
System Paging
Context Switches High
I/O Latencies High
I/O Bandwidth Low
Application Execution Serialized

100% Processor Utilization
Processor stalls
Branches mispredicted
Code or Data Misaligned

|
il
[}

g
i

([
[
||III

’] RSP &

by

(5\-
~r
®
[Junf]
i

|
||”I|||

Data Collection Techniques

« Sampling
— Collection of data based on the occurrence of a
particular event such as a timer or interrupt

— Example: Perf (perf record)

» Tracing
— Getting log of path of application
— Example: Perf (Intel PT)

* |nstrumentation

— Insertion of data collection instructions in the source
code or object code level

« Simulation

A “mgen” workload example

« Generate Remote Memory Access for ~10s on SKX

« mgen -a 0 -c 28 -t 10 (memory allocated on node0, thread runs on cpu28)

ﬁﬁﬁﬁﬁﬁ

Overview (by perf stat)

» perf stat -e cycles,instructions ./mgen-a 0 -c 28 -t 10

Performance counter stats for './mgen -a 0 -c 28 -t 10':

35,009,650,829 cycles

399,206,040 instructions ' 0.01 1insn per cycle

11.564120039 seconds time elapsed

« IPC = Instruction Per Cycle (0.01, very bad data)
« perf stat is not sampling

(nted TEEE TZamif

Who eats cycles? (by perf
record/report)

« perfrecord -e cycles ./mgen -a 0 -c 28 -t 10

 perf report --stdio (buf _read eats 98.83% cycles)

i

Overhead Command Shared Object

 perf record is sampling.

Which instruction eats cycles? (by
perf annotate)

o Is “inc %ebx” take 99.97% cycles in buf read? No!

PEBS (Precise Event)

no p - arbitrary skid

:p - constant skid

:pp - requested to have 0 skid (Intel PEBS events)
:ppp - must have 0 skid (only special case)

Run perf record with precise option again

perf record -e cycles:pp ./mgen-a 0 -c 28 -t 10

If only perf record <app>, default is -e cycles:ppp

PEBS (Precise Event)

« perf annotate --stdio

void buf read(void *buf, int read num)
[

:1
o Why instruction at 417e93 takes 99.69% cycles in buf_read?

Memory load of 417e93 (by perf c2c)

99.69 417193: mov (%rdx), Y%rdx

Why memory load so slow? Not hitin LLC? Not hit in local
memory? Cache-line false-sharing issue?

perf c2c record ./mgen-a 0 -c 28 -t 10
perf c2c report --stdio
c2c: cache to cache — Detect False-Sharing cache-lines.

Based on Intel load latency facility.

. Memory access of the access
. Type of the access (e.g. remote memory hit?)
« Latency (in cycles) of the load access

=== [TZdWis

=== EEEXETY

(i.
®
[Jom]|
[F ||.Il

What's False-Sharing?

struct foo {
int x;
int y;
}:

static struct foo f;

/* The two following functions are running concurrently: */
int sum_a(void)
{

int s = 0;

int 1i;

for (i = 0; i < 1000000; ++i)

s += f.x;
return s;

}

void inc b(void)

{

int i;
for (i = 0; i < 1000000; ++i)
++f.y;

}

sum_a re-read x from memory even though modification of y is
irrelevant.

What data address hit by 417e93 (1)

« c2c can do more than False-Sharing analysis
« perf c2c report —stdio (part of output)

T
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
LG
LI

ﬁﬁﬁﬁﬁﬁ

What data address hit by 417e93 (2)

« perf c2c report —stdio (part of output, actually many 417e93 entries)

xfEffffff924daZef

« 417e93 generates a lot of remote memory access and almost no
local or remote LLC hit (not false-sharing issue).

Timed LBR (Last Branch Records)

. Sampling + Tracing (h/w saves latest N branches to buffer)

* Given one basic block:

"

* from to branch i

* * e —— > *

* |

* |

* 7

* * > *

* from to branch i+1
"

* where the horizontal are the branches and the vertical i1s the executed
* block of instructions.

n

. Tell us the cycles of code block between 2 branches.

LBR sampling

SKL/GLM ?
63 | 62 | 61 | 6048 4716 | 15:0
Log LBRs at sample point LBR_FROM_IP SIGN_EXT (bit 47) LBR FROM address
Support 32 entries on SKL LBR_TO_IP SIGN_EXT (bit 47) LBR TO address
LBR_INFO |MISPRED [in_x |vsx_asorTeD | Reserved | cvcte-count (*)
e T e Sampe s

Performance Counter
123 456 5

v v v

Execution of program

5.
:)
([
|| u |

;:—-:; [T Zximiss

RSP &

Cycles of hot code block

« perfrecord -b -e cycles:pp ./mgen -a 0 -c 28 -t 10
 perf report --branch-history --stdio

; int read num)

.] buf read

"d" (buf), "r"(read num)

« Yellow is TO of branch X (LOOP1), green is FROM of branch X+1 (jb)
440 cycles is for code block from LOOP1 to jb

What is Processor Trace (PT)?

Intel PT is a hardware feature that logs information about
software execution

Available in Skylake, Goldmont, ... Broadwell also, but has
many limitations and is slower

Supports control flow tracing. Decoder can determine exact flow
of software execution from trace log

» Target <5% performance overhead. Depends on processor
generation and usage model

Can store both cycle count and timestamp information

22

Intel” Processor Trace Components

| PT packet log, binaries, and software runtime data are used
to reconstruct the precise execution flow

Intel
CPU0..n |
- PT packet log
(per logical processor) Intel PT
Configure & S . Intel PT-
enable Intel PT Decoder enabled Tools

Ring0 Agent

(0S, VMM, BIOS, Runtime data, including:
Driver, ...) * Map linear-address to image files
* Map CR3 value to application
* Log module load/unload and JIT info

Binary
Image Files

23

(nted TEEE TZamif

Branch timestamp (by perf PT)

perf record -e intel_pt//u ./mgen-a 0 -c 28 -t 10

perf script --ns -F time,cpu,sym,ip,srcline

11729z buf_read

11729z buf_read

117e%a buf read

leSa buf read
7Te9a buf read
9a buf read

le9a buf read

Other Tools - NumaTOP

« NumaTOP (runtime memory locality characterization on NUMA system)

Numa 0, (C) 5 Intel Co t

for sorting: 1(RMA), 2(LMA), 3(RMA/LMA), 4(CPI), 5(CPU%)
CPU utilization

Quit; H: Home; R: Refresh; I: IR Normalize; N: Node

L
L]

|

by
R

Other Tools — LKP-tests

« LKP-tests (Linux kernel performance test tool)
« Open source tool by Intel:

« Framework to run benchmarks

Integrated ~80 benchmarks/test suites

Flexible mechanism to configure various parameters

Integrated ~40 monitors to monitor resource usages and statistics
Framework for performance analysis

Can be set up in Cl environment (e.g. 0-Day ClI), used for
running benchmark and reproducing regression

References

Perf C2C:

LBR doc:

Perf PT doc:

Adding processor trace to Linux

