

Infuse AI into Your Enterprise

IBM全球杰出工程师

IBM AI系统研究技术总监

林咏华 (IBM研究院)

AI时代的移动技术革新

Era of Al: Innovations in Mobile Technologies

Roads towards Artificial Intelligence

IBM Watson

Watson won humans in Jeopardy

Solution Supporting Technologies

Transportation

Cognitive Medical

Finance & Insurance

Smarter City

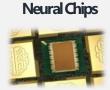
Media & Entertainment

Cognitive Retailer

Automobile

Manufacture

AI Cloud Computing


AI Vision, Acoustic, Language, Conversation

Deep Learning & Machine Learning

Quantum Computing

In-memory Computing

Deep Learning Systems

When enterprises going into AI area ...

VALUE

TALENTS

DATA

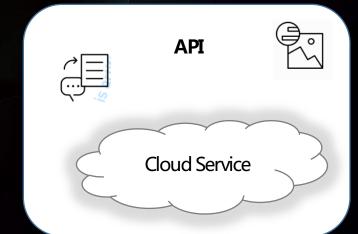
ECONOMY

An Example – PowerAI Vision

An AI product which is powered by "AI for AI" innovation

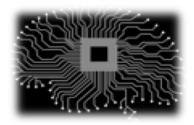
Very few enterprises have experienced teams in DL/AI

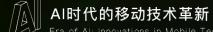
Deep Learning Experts



Fixed API capability can not meet requirements in industries

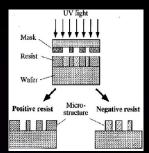
Application Developers



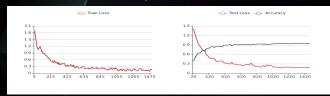


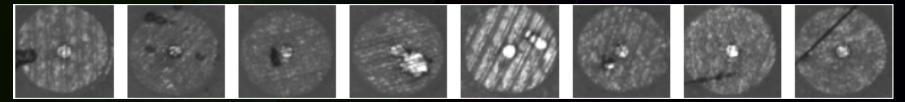
An AI Brain in Enterprise which will be used by application developer

- Learn high accurate models from enterprise data
- High productivity and efficiency



Example 1: AI for Product Quality Inspection (Manufacture)


Inspect images of photoresist openings after having been exposed and developed (光刻是通过一系列生产步骤将晶圆表面薄膜的特定部分去除的工艺。被广泛用于集成电路的生产流程。显影检查需要人工检验不合格的晶圆,以便返工重新曝光、显影。)显影检查:图形尺寸的偏差、光刻胶的污染、空洞、划伤,以及污点等。



With IBM AI Platform, the manufacture could quickly build the auto defect inspection capability:

- Data import: 1 5 min.
- Data labeling: 5 min.
- Al Vision training: 10 min.

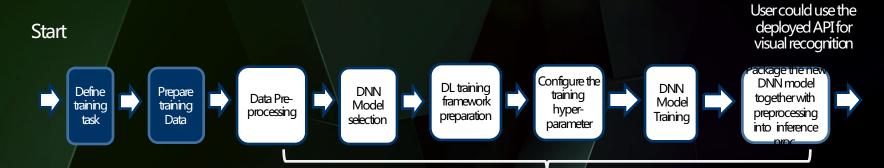
Accuracy: 94.5%

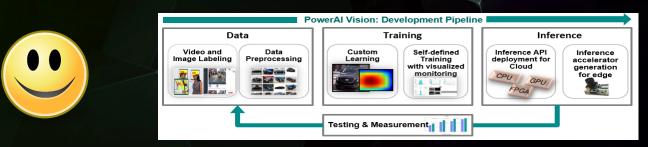
Steps for AI Deep Learning Development

Usually, developers need following steps to develop a DNN model and make it usable for application **Application**

development with inference API

Most of enterprises are facing the challenges ...


- No experience on DNN design and develop
- No experience on computer vision
- No experience on how to build a platform to support enterprise scale deep learning, including data preparation, training, and inference



We can help deep learning for Vision easier – PowerAI Vision

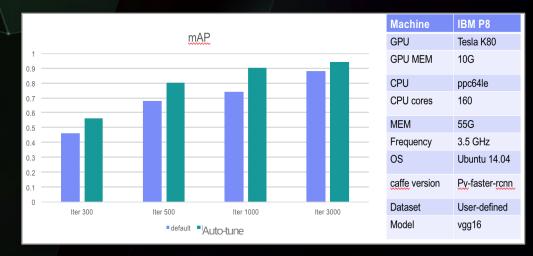
Deep knowledges of ML/DL and computer vision have been embedded into PowerAIVision.

Steps automatically done by PowerAI Vision

How to ensure good accuracy without onsite deep learning experts?

DL for DL: Learning to optimize parameters for visual analysis

- Through machine learning, PowerAI Vision will automatically tune parameters to achieve good accuracy for different training cases defined by users.
- In the following test case, our auto-tuning DL network could outperform the fix manual configuration (default) by > 6%. And it could achieve the same accuracy (e.g. 90%) with much less training time (e.g. < 1/3).

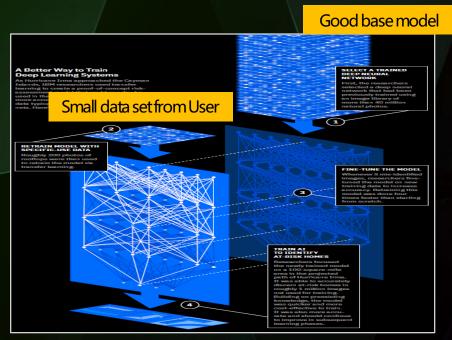

18 parameters have been tuned, including

- Caffe training parameters
- Neural network parameters
- Object detection parameters.

Test data set: object detection for helmet and safety vest

Fig. 1 Performance comparison for object detection

Enterprise: I don't have massive data



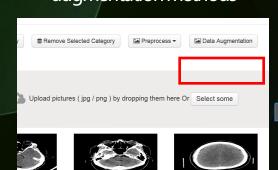
Transfer Learning for Learning from Small Data Set

- In lots of industry scenarios, we don't have huge data set.
- PowerAI Vision applied the optimized Transfer Learning technology for custom learning from small data set.

Base models supported by PowerAI Vision

- Flower (various flowers)
- Landscape (mountain, coast, forest, country side)
- Chinesefood (dumpling, rice, noodle, seafood, etc.)
- Action (fishing, reading, climbing, etc.)
- Scene (airport, street, building, campus, etc.)
- Face (human face)
- Vehicle (Jeep, Car, Sport Car, SUV, Van)
- Others (other scenarios)

Small data set, better accuracy, faster training



Data Augmentation for Learning from Small Data Set

• Data Augmentation can enhance the classification accuracy and reduce overfitting for small datasets

Data Augmentation functions has been available on PowerAIVision

Fig.1 User could "one-click" and select different data augmentation methods

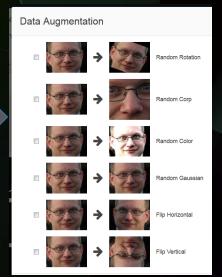
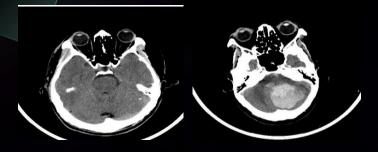
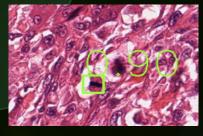
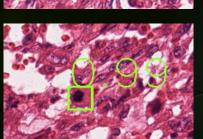
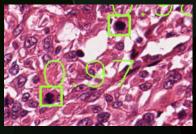



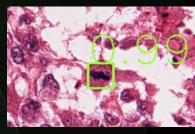
Fig.2 Data augmentation could improve the accuracy significantly

Medical image analysis for cerebral hemorrhage (脑出血) (Original data: 157 pic.)


Accuracy: 97.9%

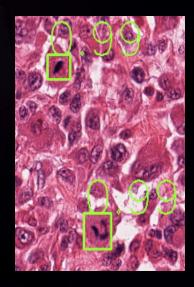





Example 2: Mitoses Detection for Medical Image

- Labeled data objects: 13
- Result: Detected 227 mitoses objects from 207 files.





Huge efforts on training data annotation

Semi auto-labeling: Reduce the time for data annotation

Semi – auto labeling: To use AI technology for releasing most of human work for labeling (10x ~ 50x)

Manually label small data set

System will learn the objects for labeling

Auto – labeling by machines

Human review and adjust

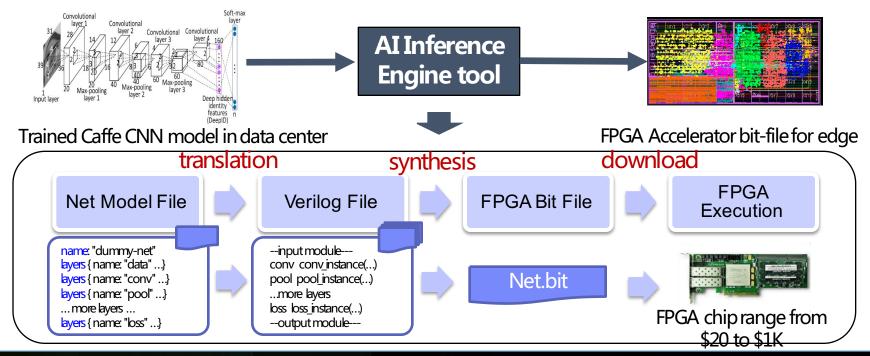
Deep Learning vs. Communication

Image classification with AlexNet: ~1260 operations for each bit in image

Object detection with YOLO: ~900 operations for each bit in image

4G communication: ~2300 operations for each bit (transmit and receive)

AI should be deployed on edge


Enterprise: I don't have experts knowing program for both deep learning and edge devices (e.g. FPGA)

Automatically generate accelerator for deep learning

Automatically enable deep learning from cloud to edge - Enhance productivity

Infuse AI into Enterprises

AI for AI

Backup

AI时代的移动技术革新

Era of Al: Innovations in Mobile Technologies

New Era of AI in the World

2013: 《人脑计划》(Human Brain Project)

2014: SPARC机器人计划

2017: 法国人工智能战略》

2016:《美国国家人工智能研发战略规划》

2016:《为未来人工智能做好准备》

2016:《人工智能、自动化和经济》

2014:《人工智能2020国家战略》(RAS 2020)

2016:《人工智能未来决策制定的机遇与影响》

2017:《新一代人工智能发展规划》

2015: 《机器人新战略》

2016:《日本下一代人工智能促进战略》

謝謝观看 THANKS