
Dr. Qiming Teng (滕启明)
tengqim@cn.ibm.com

IBM Research

• How Clouds do Scheduling Today?
– OpenStack Nova
– Kubernetes
– oVirt
– Mesos

• Discussion
– Goals
– Solutions

OpenStack Nova

Category Filter Description Type

Global AvailabilityZoneFilter AZ support L

ComputeFilter Compute active L

ComputeCapabilitiesFilter CPU topology, features, migration support etc. L

TrustedFilter Trusted Computing Pools L

ImagePropertiesFilter architecture, hypervisor, vm mode L

NumInstancesFilter, AggregateNumInstancesFilter Instances count per host/aggregate C

Resource CoreFilter, AggregateCoreFilter, ExactCoreFilter VCPU count C

RamFilter, AggregateRamFilter, ExactRamFilter RAM size C

DiskFilter, AggregateDiskFilter, ExactDiskFilter Disk capacity C

IoOpsFilter, AggregateIoOpsFilter I/O bandwidth C

NUMATopologyFilter NUMA topology (image) or extra spec (flavor) L

PciPassthroughFilter PCI vendor and product ID L

MetricsFilter Monitor metrics available? C

Freeform JsonFilter more powerful combination, via ‘query’ scheduler hints KV

Misc RetryFilter Skip hosts attempted -

Affinity SameHostFilter, DifferentHostFilter L

SimpleCIDRAffinityFilter L

ServerGroupAffinityFilter, ServerGroupAntiAffinityFilter L

TypeAffinityFilter, AggregateTypeAffinityFilter Instance type affinity KV

Category Weigher Description

Affinity SeverGroupSoftAffinityWeigher Based on instances on host

ServerGroupSoftAntiAffinityWeigher Based on instances on host

Resource RamWeigher Free RAM

DiskWeigher Free Disk

IoOpsWeigher Num I/O Ops

MetricsWeigher Metric (CPU) value

Weigher

Scheduler
select_destinations

FilterScheduler
select_destinations

HostManager
get_filtered_hosts
get_weighed_hosts

SchedulerManager
select_destinations

CachingScheduler
select_destinations

ChanceScheduler
select_destinations

BaseHostFilter
_filter_one
host_passes

BaseFilter
filter_all
_filter_one

YourHostFilter
host_passes

BaseFilterHandler
get_filterd_objects

• A step towards more general/practical usage scenarios

Quantitative

Qualitative

Kubernetes

Category Filter Description Type

Label PodTolerateNodeTaints Tolerate tainted nodes L

MatchNodeSelector • Label matches (Essential)
• Node affinity checking

L

NodeLabel Builtin L

HostName Host/node name (Essential) L

LabelPreference Check lables L

Affinity MatchInterPodAffinity (Anti-)Affinity among pods to deploy and against existing pods KV

ServiceAffinity, ServiceAntiAffinity Pods from same service scheduled to same node

Resource PodFistsResources • Allowed pod number
• Resources: CPU, Memory, NvidiaGPU, OpaqueIntResources

C

CheckNodeMemoryPressure Memory, BestEffort C

CheckNodeDiskPressure Disk C

NoDiskConflict Non-conflicting disk volumes (GCE, EBS and RBD specific) L

NoVolumeZoneConflict Volume zone L

MaxEBSVolumeCount Max volume count C

MaxGCEPDVolumeCount Max volume count KV

MaxAzureDockVolumeCount Max volume count C

GeneralPredicates • Non-critical: PodFitsResource
• Essential

L

PodFitsHostPorts Port available (Essential) KV

Category Priority Function Default Description

Spread SelectorSpreadPriority Y Minimize homogeneous #pods on the same node

ServiceSpreadingPriority N Favor nodes with fewer matching nodes

Affinity InterPodAffinityPriority Y (Anti-)Affinity, by weighting affinity scores

NodeAffinityPriority Y Prefer NodeAffinity label matches, counter matched terms

Label NodeLabelPriority Y Prefer nodes having specified labels

NodePreferAvoidPodsPriority Y Respect node ‘preferAvoidPods’ annotation

TaintTolerationPriority Y Check number of intolerable taints on nodes

Resource BalancedResourceAllocation Y Try balance resource usage, must use with
LeastRequestedPriority

LeastRequestedPriority, MostRequestedPriority Y Prefer nodes least/most utilized
(CPU + MEM)/2

ImageLocalityPriority N Prefer nodes with more local pkgs

Misc EqualPriority N The default

SchedulerExtender

extenderURL
filterVerb

prioritizeVerb
weight

Extension Support

kube-scheduler your scheduler

oVirt

• Filter + Score
• Load-Balancing

– policy + migration
• Extensibility

– Java
– Python

source: https://www.ovirt.org/develop/release-
management/features/sla/ovirtscheduler/

Category Filter Status Description Type

Spread PinToHost OK Subset of hosts a VM can pin to KV

Migration OK Filter current VM encourage migration KV

Category Weight Policy Status Description

Spread OptimalForEvenGuestDistribution OK Balanced distribution wrt #VM

OptimalForEvenDistribution OK Balanced distribution wrt CPU utilization

Affinity VMAffnityGroups OK Check VM from the same group

HA OptimalForHaReservation OK Number of HA VMs

HA OK Check number of HA VMs

POWER OptimalForPowerSaving OK Minimize number of hosts needed, considering CPU utilization

Misc None Gone Use even distribution policy instead

Resource CPU OK CPU cores C

Memory N/A Filter by memory usage -

CPU-Level OK CPU level, manufacture, model etc KV

Network OK Filter by necessary network interfaces KV

Affinity VMAffinityGroups OK Same or different hosts KV

HA HA OK Filter by HA scores KV

Misc Emulated-Machine OK Filter emulators L

None OK Filter nothing -

Mesos Family

• Mesos doesn’t do scheduling, it only manages resources
– Mesos allocates resources to frameworks
– Each frameworks decides how to “schedule”

• Mesos Agent OpenStack Nova ResourceProvider
– Resource ::= key-value pairs
– For an agent:

• --resources='cpus:24;gpus:2;mem:24576;disk:409600;...'
• or via resources.txt
[
 {
 "name": "cpus",
 "type": "SCALAR",
 "scalar": {
 "value": 24
 }
 },
 {
 "name": "gpus",
 "type": "SCALAR",
 "scalar": {
 "value": 2
 }
 },

 {
 "name": "mem",
 "type": "SCALAR",
 "scalar": {
 "value": 24576
 }
 },
 {
 "name": "disk",
 "type": "SCALAR",
 "scalar": {
 "value": 409600
 }
 },

 {
 "name": "ports",
 "type": "RANGES",
 "ranges": {
 "range": [
 {
 "begin": 21000,
 "end": 24000
 },
 {
 "begin": 30000,
 "end": 34000
 }
]
 }
 },
]

• Mesos Schedulers:
– Marathon: long running services
– Chronos: batch, periodic tasks
– both respect resource specs (offers)

• Marathon Constraints: <field, operator, parameter>
– anti-affinity:

• “constraints”: [[“hostname”: “UNIQUE”]]

– host-bind:
• “constraints”: [[“rack_id”, “CLUSTER”, “rack-1”]]

– high-availability:
• “constraints”: [[“rack_id”, “GROUP_BY”]]

– filter-host:
• “constraints”: [[“rack_id”, “LIKE”, “rack-[1-3]”]]

Discussion

• On-Demand
• Reservation
• Spot

•Soft Req
•Hard Req

• Standalone
• Combined

• Maintenance
• Upgrade
• Unplanned

Quota

Monitoring
Alarming

Accounting

Overcommit Migration IsolationUtilization

Timespan

Performance

Fairness

•Constant
•Dynamic

Responsiveness

Prediction

• Dedicated
• Shared
• Partitioned

• Homogeneous
• Heterogeneous

• Homogeneous
• Heterogeneous

• Local
• Community
• Hybrid

Affinity

Arrival Pattern

Workload Profile

Load-Balance

Availability Storage Networking

Energy

Cost

Scalability

QoS Algorithm

Special Devices

Dependency
Other

Constraints

SLA
Spec

• 1600+ papers, 90+ algorithms, during the past 10 years
• From Economy: Profit Driven

– Supply and Demand
– Marketing, Bargaining, Auction, Pricing

• From Mathematical Programming
– Multi-goal, multi-constraint optimization
– Heuristics, Meta-heuristics
– Queueing: M/G/1
– Ant Colony
– Genetic algorithms
– Bag of tasks, Group scheduling
– …

• Extensibility, Complexity, …

• there are many academic research work on cloud scheduling
– most of which are not landed in real world deployments

• a well-designed scheduling solution can give you a competitive edge

• there is no solution ready for your environment
– and there will never be one if you don't know what you need

• we give and we take

