
Designing for
Deployment

Len Bass

Outline

• Release process

• Microservice architecture

• Deployment strategies

• Other issues

© Len Bass 2015 2

Why Does Placing a System into
Production Take so Long?

• One reason is that changes are packaged into releases.

• All projects have to be combined to make up a release

• Releases are scheduled

© Len Bass 2015 3

Managing releases

• Releases are stressful.

• Releases take careful management

• Errors in deployed code are a major source of outages.

• So much so that organizations have formal release plans.

• There is a position called a “Release Engineer” that has
responsibility for managing releases.

© Len Bass 2015 4

Suppose releases did not have to be
scheduled?

• Release when a code segment is complete

• Small releases

• Less stress

• Less waiting for a release to be complete

Shorter time to market for new features, fixes

• Happier stakeholders!

© Len Bass 2015 5

Ad hoc releases exist

• Many companies now release to production multiple
times per day.

• Etsy releases 90 times a day

• Facebook releases 2 times a day

• Amazon had a new release to production every 11.6 seconds in
May of 2011

© Len Bass 2015 6

Replace management discipline
over release by engineering

discipline

• The management discipline that went into release
planning and execution is replaced by

• Engineering process discipline

• Architecture techniques

• Tool support

© Len Bass 2015 7

Deployment
• Much of the current software engineering focus is

on completing code

• But … Code Complete Code in Production

• Between the completion of the code and the
placing of the code into production is a step
called: Deployment

• Deploying completed code can be very time
consuming

• One purpose of release planning is to deploy
code without errors 8

Modern Deployment Processes

Process Architecture techniques Tools

Continuous
Deployment

• Microservice
architecture

• Backward/Forward
compatability

• Feature toggles

• Management
tools

• Deployment
pipeline tools

• Configuration
management
tools

Post deployment
testing

• Reliability tactics
• Pedigreed testing
• Initialization testing
• Log generation

• Fault injection
tools

• Locality tools
• Performance

monitors
• Janatorial tools

© Len Bass 2015 9

Outline

• Release process

• Microservice architecture

• Deployment strategies

• Other issues

© Len Bass 2015 10

~2002 Amazon instituted the following
design rules - 1

• All teams will henceforth expose their data and functionality
through service interfaces.

• Teams must communicate with each other through these
interfaces.

• There will be no other form of inter-process communication
allowed: no direct linking, no direct reads of another team’s
data store, no shared-memory model, no back-doors
whatsoever. The only communication allowed is via service
interface calls over the network.

11

Amazon design rules - 2

• It doesn’t matter what technology they[services] use.

• All service interfaces, without exception, must be
designed from the ground up to be externalizable.

• Amazon is providing the specifications for what has come
to be called “Microservice Architecture”.

• (Its really an architectural style).

12

In Addition
• Amazon has a “two pizza” rule.

• No team should be larger than can be fed with two pizzas
(~7 members).

• Each (micro) service is the responsibility

of one team

• This means that microservices are

small and intra team bandwidth

is high

• Large systems are made up of many microservices.

• There may be as many as 140 in a typical Amazon page.13

Microservice architecture supports
continuous deployment

• Two topics:

• What is microservice architecture?

• What are the deployment issues and how do I deal with them?

14

Micro service architecture

15

Service
• Each user request is satisfied by

some sequence of services.

• Most services are not externally
available.

• Each service communicates with
other services through service
interfaces.

• Service depth may

– Shallow (large fan out)

– Deep (small fan out, more
dependent services)

Relation of teams and services

• Each service is the responsibility of a single
development team

• Individual developers can deploy new version
without coordination with other developers.

• It is possible that a single development team is
responsible for multiple services

16

Questions about Micro SOA

• /Q/ Isn’t it possible that different teams will implement
the same functionality, likely differently?

• /A/ Yes, but so what? Major duplications are avoided
through assignment of responsibilities to services. Minor
duplications are the price to be paid to avoid necessity for
synchronous coordination.

• /Q/ what about transactions?

• /A/ Micro SOA privileges flexibility above reliability and
performance. Transactions are recoverable through
logging of service interactions. This may introduce some
delays if failures occur.

17

Microservice architecture supports
continuous deployment

• Two topics:

• What is microservice architecture?

• What are the deployment issues and how do I deal with them?

18

Outline

• Release process

• Microservice architecture

• Deployment strategies

• Other issues

© Len Bass 2015 19

Deploying a new version of an
application

20

Multiple instances

of a service are

executing
•Red is service being replaced

with new version

•Blue are clients

•Green are dependent services

VAVB
VBVB

UAT / staging /
performance

tests

Deployment goal and constraints

• Goal of a deployment is to move from current state
(N instances of version A of a service) to a new state
(N instances of version B of a service)

• Constraints:

• Any development team can deploy their service at any time. I.e.
New version of a service can be deployed either before or after a
new version of a client. (no synchronization among development
teams)

• It takes time to replace one instance of version A with an instance of
version B (order of minutes)

• Service to clients must be maintained while the new version is being
deployed.

21

Deployment strategies

• Two basic all of nothing strategies

• Red/Black – leave N instances with version A as they are, allocate
and provision N instances with version B and then switch to
version B and release instances with version A.

• Rolling Upgrade – allocate one instance, provision it with version
B, release one version A instance. Repeat N times.

• Partial strategies are canary testing and A/B testing.

22

Trade offs – Red/Black and Rolling
Upgrade

• Red/Black

• Only one version available to the
client at any particular time.

• Requires 2N instances (additional
costs)

• Rolling Upgrade

• Multiple versions are available for
service at the same time

• Requires N+1 instances.

• Rolling upgrade is widely used.

23

Update Auto Scaling
Group

Sort Instances

Remove & Deregister
Old Instance from ELB

Confirm Upgrade Spec

Terminate Old Instance

Wait for ASG to Start
New Instance

Register New Instance
with ELB

Rolling

Upgrade

in EC2

What are the problems with Rolling
Upgrade?

• Any development team can deploy their service at any
time.

• Three concerns

• Maintaining consistency between different versions of the same
service when performing a rolling upgrade

• Maintaining consistency among different services

• Maintaining consistency between aand persistent data

24

Maintaining consistency

• Key idea – differentiate between installing a new version
and activating a new version

• Involves “feature toggles” (described momentarily)

• Sequence

• Develop version B with new code under control of feature toggle

• Install each instance of version B with the new code toggled off.

• When all of the instances of version A have been replaced with
instances of version B, activate new code through toggling the
feature.

25

Issues

• What is a feature toggle?

• How do I manage features that extend across multiple
apps?

• How do I activate all relevant instances at once?

26

Feature toggle

• Place feature dependent new code inside of an “if”
statement where the code is executed if an external
variable is true. Removed code would be the “else”
portion.

• Used to allow developers to check in uncompleted code.
Uncompleted code is toggled off.

• During deployment, until new code is activated, it will not
be executed.

• Removing feature toggles when a new feature has been
committed is important.

27

Multi service features

• Most features will involve multiple services.

• Each service has some code under control of a feature
toggle.

• Activate feature when all instances of all services involved
in a feature have been installed.

• Maintain a catalog with feature vs service version number.

• A feature toggle manager determines when all old instances of
each version have been replaced. This could be done using
registry/load balancer.

• The feature manager activates the feature.

• Archaius is an open source feature toggle manager.

28

Activating feature

• The feature toggle manager changes the value of the
feature toggle. Two possible techniques to get new value
to instances.

• Push. Broadcasting the new value will instruct each instance to
use new code. If a lag of several seconds between the first
service to be toggled and the last can be tolerated, there is no
problem. Otherwise synchronizing value across network must be
done.

• Pull. Querying the manager by each instance to get latest value
may cause performance problems.

• A coordination mechanism such as Zookeeper will
overcome both problems.

29

Outline

• Release process

• Microservice architecture

• Deployment strategies

• Other issues

© Len Bass 2015 30

Canary testing

• Canaries are a small number of instances of a new version
placed in production in order to perform live testing in a
production environment.

• Canaries are observed closely to determine whether the new
version introduces any logical or performance problems. If not,
roll out new version globally. If so, roll back canaries.

• Named after canaries

in coal mines.

• Similar in concept to

beta testing for shrink

wrapped software

31

Implementation of canaries

• Designate a collection of instances as canaries. They do not need to
be aware of their designation.

• Designate a collection of customers as testing the canaries. Can be,
for example

• Organizationally based

• Geographically based

• Then

• Activate feature or version to be tested for canaries. Can be done
through feature activation synchronization mechanism

• Route messages from canary customers to canaries. Can be
done through making registry/load balancer canary aware.

32

A/B testing

• Suppose you wish to test user response to a system
variant. E.g. UI difference or marketing effort. A is one
variant and B is the other.

• You simultaneously make available both variants to
different audiences and compare the responses.

• Implementation is the same as canary testing.

33

Rollback

• New versions of a service may be unacceptable either for
logical or performance reasons.

• Two options in this case
• Roll back (undo deployment)

• Roll forward (discontinue current deployment and create a new
release without the problem).

• Decision to rollback or roll forward is almost never
automated because there are multiple factors to
consider.
• Forward or backward recovery

• Consequences and severity of problem

• Importance of upgrade

34

Summary

• Speeding up deployment time will reduce time to market

• Continuous deployment is a technique to speed up
deployment time

• Microservice architecture is designed for minimizing
coordination needs and allowing independent
deployment

• Multiple simultaneous versions managed with feature
toggles.

• Feature toggles support rollback, canary testing, and A/B
testing.

35

More Information

Contact lenbass@cmu.edu

DevOps: A Software Architect’s
Perspective is available from your
favorite bookseller

36

