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Why Does Placing a System into 
Production Take so Long?

• One reason is that changes are packaged into releases.

• All projects have to be combined to make up a release

• Releases are scheduled
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Managing releases

• Releases are stressful.

• Releases take careful management

• Errors in deployed code are a major source of outages.

• So much so that organizations have formal release plans.

• There is a position called a “Release Engineer” that has 
responsibility for managing releases.
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Suppose releases did not have to be 
scheduled?

• Release when a code segment is complete

• Small releases

• Less stress

• Less waiting for a release to be complete

Shorter time to market for new features, fixes

• Happier stakeholders!
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Ad hoc releases exist

• Many companies now release to production multiple 
times per day.

• Etsy releases 90 times a day

• Facebook releases 2 times a day

• Amazon had a new release to production every 11.6 seconds in 
May of 2011
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Replace management discipline 
over release by engineering 

discipline

• The management discipline that went into release 
planning and execution is replaced by

• Engineering process discipline

• Architecture techniques

• Tool support
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Deployment
• Much of the current software engineering focus is 

on completing code

• But … Code Complete         Code in Production

• Between the completion of the code and the 
placing of the code into production is a step 
called: Deployment

• Deploying completed code can be very time 
consuming

• One purpose of release planning is to deploy 
code without errors 8



Modern Deployment Processes

Process Architecture techniques Tools

Continuous 
Deployment

• Microservice
architecture

• Backward/Forward 
compatability

• Feature toggles

• Management 
tools

• Deployment 
pipeline tools

• Configuration 
management
tools

Post deployment 
testing

• Reliability tactics
• Pedigreed testing
• Initialization testing
• Log generation

• Fault injection 
tools

• Locality tools
• Performance 

monitors
• Janatorial tools
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~2002 Amazon  instituted the following 
design rules - 1

• All teams will henceforth expose their data and functionality 
through service interfaces. 

• Teams must communicate with each other through these 
interfaces. 

• There will be no other form of inter-process communication 
allowed: no direct linking, no direct reads of another team’s 
data store, no shared-memory model, no back-doors 
whatsoever. The only communication allowed is via service 
interface calls over the network. 
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Amazon design rules - 2

• It doesn’t matter what technology they[services] use. 

• All service interfaces, without exception, must be 
designed from the ground up to be externalizable.

• Amazon is providing the specifications for what has come 
to be called “Microservice Architecture”.

• (Its really an architectural style).
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In Addition
• Amazon has a “two pizza” rule.

• No team should be larger than can be fed with two pizzas 
(~7 members).

• Each (micro) service is the responsibility 

of one team

• This means that microservices are 

small and intra team bandwidth 

is high

• Large systems are made up of many microservices.

• There may be as many as 140 in a typical Amazon page.13



Microservice architecture supports 
continuous deployment

• Two topics:

• What is microservice architecture?

• What are the deployment issues and how do I deal with them?
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Micro service architecture
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Service
• Each user request is satisfied by 

some sequence of services.

• Most services are not externally 
available.

• Each service communicates with 
other services through service 
interfaces.

• Service depth may 

– Shallow (large fan out)

– Deep (small fan out, more 
dependent services)



Relation of teams and services

• Each service is the responsibility of a single 
development team

• Individual developers can deploy new version 
without coordination with other developers.

• It is possible that a single development team is 
responsible for multiple services
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Questions about Micro SOA

• /Q/ Isn’t it possible that different teams will implement 
the same functionality, likely differently?

• /A/ Yes, but so what? Major duplications are avoided 
through assignment of responsibilities to services. Minor 
duplications are the price to be paid to avoid necessity for 
synchronous coordination.

• /Q/ what about transactions?

• /A/ Micro SOA privileges flexibility above reliability and 
performance. Transactions are recoverable through 
logging of service interactions. This may introduce some 
delays if failures occur.
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Microservice architecture supports 
continuous deployment

• Two topics:

• What is microservice architecture?

• What are the deployment issues and how do I deal with them?
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Deploying a new version of an 
application

20

Multiple instances 

of a service are 

executing
•Red is service being replaced 

with new version

•Blue are clients

•Green are dependent services

VAVB
VBVB

UAT / staging / 
performance 

tests



Deployment goal and constraints

• Goal of a deployment is to move from current state 
(N instances of version A of a service) to a new state 
(N instances of version B of a service) 

• Constraints:

• Any development team can deploy their service at any time. I.e. 
New version of a service can be deployed either before or after a 
new version of a client. (no synchronization among development 
teams)

• It takes time to replace one instance of version A with an instance of 
version B (order of  minutes)

• Service to clients must be maintained while the new version is being 
deployed.
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Deployment strategies

• Two basic all of nothing strategies

• Red/Black – leave N instances with version A as they are, allocate 
and provision N instances with version B and then switch to 
version B and release instances with version A.

• Rolling Upgrade – allocate one instance, provision it with version 
B, release one version A instance. Repeat N times.

• Partial strategies are canary testing and A/B testing.
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Trade offs – Red/Black and Rolling 
Upgrade

• Red/Black

• Only one version available to the 
client at any particular time.

• Requires 2N instances (additional 
costs)

• Rolling Upgrade

• Multiple versions are available for 
service at the same time

• Requires N+1 instances.

• Rolling upgrade is widely used. 
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Group

Sort Instances

Remove & Deregister 
Old Instance from ELB

Confirm Upgrade Spec

Terminate Old Instance

Wait for ASG to Start 
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What are the problems with Rolling 
Upgrade?

• Any development team can deploy their service at any 
time.

• Three concerns

• Maintaining consistency between different versions of the same 
service when performing a rolling upgrade

• Maintaining consistency among different services

• Maintaining consistency between aand persistent data
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Maintaining consistency

• Key idea – differentiate between installing a new version 
and activating a new version

• Involves “feature toggles” (described momentarily)

• Sequence

• Develop version B with new code under control of feature toggle

• Install each instance of version B with the new code toggled off.

• When all of the instances of version A have been replaced with 
instances of version B, activate new code through toggling the 
feature.
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Issues

• What is a feature toggle?

• How do I manage features that extend across multiple 
apps?

• How do I activate all relevant instances at once?
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Feature toggle

• Place feature dependent new code inside of an “if” 
statement where the code is executed if an external 
variable is true. Removed code would be the “else” 
portion.

• Used to allow developers to check in uncompleted code. 
Uncompleted code is toggled off.

• During deployment, until new code is activated, it will not 
be executed.

• Removing feature toggles when a new feature has been 
committed is important.
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Multi service features

• Most features will involve multiple services.

• Each service has some code under control of a feature 
toggle.

• Activate feature when all instances of all services involved 
in a feature have been installed.

• Maintain a catalog with feature vs service version number.

• A feature toggle manager determines when all old instances of 
each version have been replaced. This could be done using 
registry/load balancer.

• The feature manager activates the feature.

• Archaius is an open source feature toggle manager.
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Activating feature

• The feature toggle manager changes the value of the 
feature toggle. Two possible techniques to get new value 
to instances.

• Push. Broadcasting the new value will instruct each instance to 
use new code. If a lag of several seconds between the first 
service to be toggled and the last can be tolerated, there is no 
problem. Otherwise synchronizing value across network must be 
done.

• Pull. Querying the manager by each instance to get latest value 
may cause performance problems.

• A coordination mechanism such as Zookeeper will 
overcome both problems. 
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Canary testing

• Canaries are a small number of instances of a new version 
placed in production in order to perform live testing in a 
production environment.

• Canaries are observed closely to determine whether the new 
version introduces any logical or performance problems. If not, 
roll out new version globally. If so, roll back canaries.

• Named after canaries 

in coal mines.

• Similar in concept to 

beta testing for shrink

wrapped software 

31



Implementation of canaries

• Designate a collection of instances as canaries. They do not need to 
be aware of their designation. 

• Designate a collection of customers as testing the canaries. Can be, 
for example

• Organizationally based

• Geographically based

• Then

• Activate feature or version to be tested for canaries. Can be done 
through feature activation synchronization mechanism

• Route messages from canary customers to canaries. Can be 
done through making registry/load balancer canary aware.
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A/B testing

• Suppose you wish to test user response to a system 
variant. E.g. UI difference or marketing effort. A is one 
variant and B is the other.

• You simultaneously make available both variants to 
different audiences and compare the responses.

• Implementation is the same as canary testing.
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Rollback

• New versions of a service may be unacceptable either for 
logical or performance reasons. 

• Two options in this case
• Roll back (undo deployment)

• Roll forward (discontinue current deployment and create a new 
release without the problem).

• Decision to rollback or roll forward is almost never 
automated because there are multiple factors to 
consider.
• Forward or backward recovery

• Consequences and severity of problem

• Importance of upgrade
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Summary

• Speeding up deployment time will reduce time to market

• Continuous deployment is a technique to speed up 
deployment time

• Microservice architecture is designed for minimizing 
coordination needs and allowing independent 
deployment

• Multiple simultaneous versions managed with feature 
toggles.

• Feature toggles support rollback, canary testing, and A/B 
testing.
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More Information

Contact lenbass@cmu.edu

DevOps: A Software Architect’s 
Perspective is available from your 
favorite bookseller 
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