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Indexes
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Overview

● Currently three types of Indexes in InnoDB
● PK and Secondary Indexes with B-Tree index
● Fulltext indexes (using AUX tables)
● Spatial Index with R-tree

● InnoDB Internal Index
● Adaptive Hash Index
● Change buffering (organized as B-tree)
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B-Tree Index

● All data are organized in Clustered Index by PRIMARY KEY
● Sequential and ordered insertion (according to PK) is preferred

● Secondary index refer to rows by PK
● PK keys are appended to secondary keys
● Update PK also update Secondary indexes
● Long PK are expensive
● The appended PK could be significant when comparing to actual indexed 

column size
● PK range scan is efficient while Secondary search probably 

requires two key searches (for MVCC)
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Btree Index(cont.)

● Fast index build with bulk load
● New feature in 5.7
● innodb_fill_factor to reserve space for future
● Redo logging is disabled, pages have to be flushed
● innodb_sort_buffer_size(1M)

● Index Condition Pushdown(ICP)
● Fetaure available in 5.6
● WHERE conditions can be evaluated immediately
● Less accessing to Clustered index and InnoDB

● Covering index scan
● Leverage the stored PRIMARY KEY on Secondary index
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Full-Text Index

● Supported with 5.6 release
● An “Inverted Index” design

● FTS_DOC_ID column may be added during creating Full-text Index
● Full-text search can only see the committed data
● innodb_ft_total_cache_size / innodb_ft_result_cache_limit /   

innodb_ft_sort_pll_degree
● Mecab parser plugin for Japanese

● Feature in 5.7
● Ngram parser for CJK

● Feature in 5.7
 Tokenizes text into sequence of n characters(ngram_token_size)
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Spatial Index

● New Feature in 5.7 releases
● Index on spatial data, which is stored as WKB(Well-Known 

Binary) in PK, but only MBR(minimal Bounding Rectangle) in 
the spatial index.

● Index is organized as R-tree, tree structure similar to B-tree 
as balanced tree.

● No composite Rtree index, can only index on one spatial 
column

● Every index entry is an MBR(Minimum Bounding Rectangle) 
of raw WKB data
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InnoDB Internal Index - Adaptive Hash 
Index

● Hash indexes on hot secondary index pages to speed up 
lookups
● It can be built on a prefix of the key defined
● Not all workloads can take advantage of it, so benchmark with it 

first
● Configure variable – innodb_adaptive_hash_index(on/off)
● innodb_adaptive_hash_index_parts(8) to partition the search 

system into several parts to reduce contention
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Change Buffer

● To reduce disk IO for updates to non-unique secondary 
index

● To buffer combinations of INSERT, DELETE and PURGE
● The buffer itself is a Btree, residing in system tablespace 

only
● Merge will be done when

● The related leaf page is read into buffer pool
● In some background threads and slow shutdown
● Thus merge may cause slowdown because of random IO

● innodb_change_buffering / innodb_change_buffer_max_size
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Virtual Column

● New feature in 5.7
● Generated Column

● b INT GENERATED ALWAYS AS(a + 1) VIRTUAL
● AS(minute(now()) is not allowed
● Can refer to other generated columns

● Two types of Generated Column
● STORED(like normal column) or VIRTUAL

● No need to store any Virtual Column in Clustered Index
● Virtual Columns can't be on PK
● ADD or DROP VIRTUAL Columns would be very efficient, which can be done 

instantly without rebuild
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Virtual Index

● Secondary indexes can be built on Virtual Columns
● One or more virtual columns
● Combination of virtual or non-virtual columns

● Virtual columns have to be materialized on secondary 
indexes

● Changes to base columns should be updated to virtual 
columns on secondary indexes
● MVCC, Rollback and Recovery supported

● ADD or DROP virtual index is in-place operation
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Storage layout
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Tablespace

● All data(pages) stored in tablespaces
● Either general or innodb-file-per-table tablespace
● Currently, the clustered index and all secondary indexes of the same table 

should reside in the same tablespace
● Logs are stored in redo/undo logs

● Every tablespace maps to one or more data files
● System tablespace is a special one

● It includes change buffer, double write buffer, data dictionary 
tables, default undo log and even user tables etc.
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Tablespace Types

● Innodb-file-per-table(default)
● CREATE/DROP table will create/drop the tablespace automatically
● Different tables can be on different storage devices
● More file handles would be used when there are lots of tables
● Free spaces could only be reused by current table

● General tablespace
● New Feature in 5.7
● Multiple tables can reside in the same tablespace
● It can be created in an independent directory
● Less tablespace metadata in memory
● Free space could not be released back to the OS
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Temporary Tablespace

● New feature in 5.7
● A dedicated tablespace(ibtmp1) created for all temporary 

tables, not on raw device
● It will be dropped at shutdown, and always be (re)created 

on startup unless it's RO
● No redo logs for temporary tables
● This tablespace doesn't support COMPRESSED row format.
● innodb_temp_data_file_path
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Undo Tablespace

● InnoDB has undo log(rollback segment) to store the copies 
of data, set by innodb_undo_logs(128)
● Starting 5.6.3, InnoDB support multiple undo tablespaes

● System tablespace always owns one undo log
● Temporary tablespace always own 32 undo logs, new in 5.7
● Undo tablespace is designed to reduce mutex contention to 

system tablespace only
● To hold undo logs from 33 to 128, in round robin way

● Undo tablespaces can be assigned to SSD for better 
performance



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

Truncate Undo Tablespace

● New feature in 5.7
● Truncate suitable undo tablespace periodically if its size 

exceeds some threshold
● All pages in the tablespace should be free
● There should be some undo logs available, at least 2 undo tablespaces and 

35 undo logs
● innodb_undo_log_truncate(off)/innodb_max_undo_log_size(1G)

● The truncate is crash-safe, by writing DDL log file
● innodb_purge_rseg_truncate_frequency(128)

● The bigger, the slower to free undo logs
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File Format

● Two data file formats
● Antelope and Barracuda
● innodb_file_format, which doesn't apply to general tablespaces
● Antelope stores up to the first 768 bytes of variable-length 

column within Btree node, remainder are on the overflow 
pages

● Barracuda will store all of the long value off-page, only have a 
20-byte pointer to the overflow page; if it's <= 40 bytes, it's 
stored in-line

● Note that character set will affect the final column length
● CHAR(255) CHARACTER SET utf8mb4: 255 * 4
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File Space

● Each tablespace consists of “files”, which are called 
segments
● Different indexes have their own segments, two for each index
● Segment can grow and shrink
● A segment is number of extents. An extent, which could be of 1 / 2 / 4 MB, 

consists of consecutive pages
● The smallest unit is page

● Same size in a single tablespace
● 4K, 8K, 16K(default), 32K, 64K
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Space Allocation

● Initial size could be rather small, for example, 7 or 8 pages
● No matter it's in innodb_file_per_table or general tablespace
● Then it grows to one extent
● Then 1 extent every time, if too big, 4 extents every time

● Free pages are recycled within same segment
● Extent can be used by other segments if all pages within it 

are free
● Tablespace never shrinks itself
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Redo Logs

● Log files to record changes to data, ib_logfile?
● innodb_log_files_in_group(2), used in a circular fashion
● Log is organized by records, which is aligned 512 bytes
● Log record is physical + logical
● Nearly every record consists of (space, page_no) and the operation to do on 

the page
● Log header has the last checkpoint information

● Larger log files can ease disk IO on running, but may slow 
down recovery
● innodb_log_file_size(48MB), can be 1G etc.
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Redo Logs(Cont.)

● The size of in-memory log buffer affects large transactions, 
the larger, the less disk IO
● innodb_log_buffer_size(16M), can be tens to hundreds
● Can extend automatically if one redo log is too long(BLOBs)

● innodb_flush_log_at_trx_commit(1)
● Could improve insert rate significantly
● 0: Write out and flush approximately once per second
● 1: Write out and flush at each commit
● 2: Write out at each commit and flush approximately once per second

● Resize redo logs offline
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Data Dictionary



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

Data Dictionary

● InnoDB now keeps its own data dictionary
● In INNODB_SYS_* tables
● Could be out-of-sync with Server's data dictionary, such as after 

a crash of DDL
● We are aiming to implement an universal data dictionary
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Threads
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Foreground Threads

● User threads
● Using MySQL threads for execution, one thread per connection

● Limit the user threads running concurrently
● To reduce contention in InnoDB
● innodb_thread_concurrency, default 0, no checking
● innodb_concurrency_tickets(5000), trade off between small and large 

transactions
● Exceeded threads will wait in a FIFO queue
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Background Threads

● Master thread
● Flush logs, change buffer merge, table cache cleanup, checkpoint, etc.

● IO threads, max 130
● Read threads: innodb_read_io_threads(4)
● Write threads: innodb_write_io_threads(4)
● Change buffer thread for merging
● Log thread for flushing logs

● Purge, Cleaner, Lock timeout, Monitor threads, etc.
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Multi Versioning (MVCC)
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Overview

● InnoDB keeps information/pointers about old versions of 
changed rows in its PK
● All information is stored in undo logs(rollback segment)
● Only changed columns have to be logged
● Reading or transaction rollback will read old versions from 

undo logs
● InnoDB supports all four transaction isolation

● Serializable, Repeatable Read, Read Committed, Read Uncommitted
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Two Types of Reading

● Consistent Read
● Use MV to present a snapshot at a point in time
● No locking, no conflict with write, fast
● See changes committed before the point of time

● Locking Read(SELECT ... FOR UPDATE/LOCK IN SHARE MODE)
● Lock the currently existing row
● All locks will be released when commit or rollback
● Slower due to locking, UPDATE has larger overhead

● Results of consistent read and locking read are different
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Multi-Versioning

● Every record in Clustered index has system fields
● DB_TRX_ID: the last transaction that modifies the row
● DB_ROLL_PTR: points to the undo log record in undo logs

● Records in Clustered index are updated in-place
● Records in Secondary index are delete-marked and new 

records are inserted directly
● To verify if a row is readable, DB_TRX_ID is checked first, 

and then proper version can be read from undo logs by 
referencing DB_ROLL_PTR
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Multi Versioning(Cont.)

● Two types of undo logs
● Insert undo logs, needed by rollback, can be discarded on commit
● Update undo logs, used by consistent read, can be discarded by purge

● All undo logs for the same row are linked
● No limit on number of old versions → large undo logs
● Intermediate versions have to be kept
● Also records on indexes could not be purged

● Prevent long running transactions, commit regularly
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Purge

● Index records and old versions need to be removed
● When they are not needed for any active transaction

● Purge threads will do the job automatically
● innodb_purge_threads(4)
● Undo logs from one table would be purged by same purge thread

● Slow down DMLs when purge threads are lagging
● innodb_max_purge_lag(0)
● innodb_max_purge_lag_delay(0)
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Locking and Latching
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Lock Types

● Intention Locks
● Table-level locks indicating how to lock rows in the table

● Record Locks
● Lock the index record only

● Gap Locks
● Lock the gap between index records, set after record moved

● Next-key Locks
● Combination of record lock and a gap lock before the record

● Insert intention Locks
● A type of GAP lock set by INSERT before insertion, this works only with GAP 

lock to prevent “Phantom reads”
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Gap Locks

● The purpose is to block insertion, to prevent phantom rows, 
used in RR, serializable mode

● The whole range on a page is defined by “infimum” and 
“supremum”
● It's possible to lock the supremum and gap before it

● A gap can span one or more possible index records, or none
● Not all queries have to place gap locks

● SELECT * FROM t1 WHERE building = 12 AND room = 3;
● No gap lock for select by (building, room) if it's unique index
● Scan using only building in condition requires gap lock
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Gap Locks(Cont.)

● S-lock and X-lock can be placed on the same gap by 
different transactions

● Gap locks can be merged when index records get deleted
● Gap locks could result in complex deadlock
● Can be disabled for index scans by using isolation level <= 

Read Commit
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How to prevent INSERT

● In RR or Serializable isolation level, next-key lock is used for 
searches and index scans
● Thus the gap before the selected records are locked too

● INSERT sets Insert Intention Lock before insertion, which is 
a type of gap lock, and record lock on inserted row

● Insert Intention Locks within the same gaps don't conflicts 
with each other
● No conflicts on the gap and also no conflicts on different values
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What locks to be set?

● SELECT … FROM reads snapshot and sets no locks
● In SERIALIZABLE, shared next-key locks would be set

● SELECT … FOR UPDATE/LOCK IN SHARE MODE
● S/X next-key locks on all index records scanned
● locks are expected to be released for not matched rows

● UPDATE and DELETE set locks on every index record that is 
scanned

● If no indexes on the table, every rows of the table become 
locked, which happens in RR and blocks all inserts



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

Predicate Locks

● New feature in 5.7
● It's only used for Spatial Index (Rtree) search only now, 

because for multi-dimension data, it's difficult to define the 
“next” key

● Predicate lock simply lock the MBR which is used for the 
query
● ST_Contains(@poly, point), lock the MBR(@poly)
● Other transactions could not insert or modify a row which would have 

matched the condition
● Predicate lock doesn't conflict with record lock or table lock
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Locking Wait

● innodb_lock_wait_timeout(50 seconds), which applies to row 
locks only

● The length of time before giving up a lock request
● If timeout, the current statement is rolled back

● To rollback whole transaction, enable innodb_rollback_on_timeout(off)
● If OLTP performance is cared, decrease the value, 

otherwise, increase it
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Deadlock Detector

● Deadlock can happen in one or multiple tables
● Mainly because of updates, even if duplicate checking

● How to prevent
● Keep the transaction as small as possible
● Do locking in the same order, from small to big, etc.

● Disable deadlock detector, to prevent contention on lock 
mutex
● New feature in 5.7
● innodb_deadlock_detect(on)
● innodb_lock_wait_timeout takes effect
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Latches

● Two kinds of latches
● Mutex, exclusive
● Rw-lock, includes S, X and SX lock
● SX lock improves concurrency of index accessing, etc. which is new feature 

in 5.7
● To get a latch, first Spin Waiting, then Sleep and Wait
● innodb_spin_wait_delay(6), dynamic one

● Wait a random time between spinnings, to prevent unexpected cache 
invalidation

● Set to 0 to disable it
● Hot mutexes, log_sys->mutex, fil_system->mutex, etc.
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Buffer Pool
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Overview

● An area in main memory for caching table and index data
● Ideally, the larger size the better

● Innodb_buffer_pool_size, which is dynamic
● On a dedicated server, up to 80% of physical memory can be assigned to BP

● One or more buffer pool instances, to improve concurrency
● Innodb_buffer_pool_instances(8), depending on number of cores
● Pages are mapped randomly by hash function

● Buffer Pool dump and restore for speedy warmup



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

Buffer Pool Resize

● This can be done online, new feature in 5.7
● Both increase and decrease buffer pool size are performed 

in chunks
● innodb_buffer_pool_chunk_size(128MB)

● innodb_buffer_pool_size = N * 
(innodb_buffer_pool_instances * 
innodb_buffer_pool_chunk_size)

● Size decrement can only start if enough pages can be 
withdrawn, which means the pages should not be held by 
active transactions
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Buffer Pool Read

● Data pages are generally read from disk into Buffer Pool by 
executing threads, which is synchronized read

● Change buffer merge thread also reads pages
● Read-ahead prefetches a group of pages

● If sequential or batch of pages are in BP
● Linear, innodb_read_ahead_threshold(56)
● Random, innodb_random_read_ahead(off)
● Asynchronous read



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

LRU Algorithm

● Buffer Pools maintains a list for all cached pages, which is a 
variation of LRU list, from new to old

● To read in a page, put it in the midpoint of the LRU list
● innodb_old_blocks_pct(37 or 3/8 of the list)
● Make it as big as possible(95) to active as familiar LRU
● innodb_old_blocks_time(1000), duration to stay in old list

● First access to the page will move it to the new list
● Make scan resistance from large full table scans and read-

ahead
● Scan the LRU tail to find free page for replacement
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Flushing

● Dirty pages have to be flushed to disk
● Start if innodb_max_dirty_pages_pct_lwm(0) is set
● Try to keep innodb_max_dirty_pages_pct(75)

● InnoDB uses redo logs in a circular fashion, so before 
reusing part of the logs, all related page changes have to be 
flushed to disk
● Sharp checkpoint
● It affects performance significantly in a write-intensive workload
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Adaptive Flushing

● Based on the number of dirty pages and redo logs 
generation rate
● innodb_adaptive_flushing(on)
● Decide how many dirty pages to flush per second to smooth the overall 

performance
● Flushing is done by page cleaner threads

● innodb_page_cleaners(4), not bigger than BP instances
● Start flushing if innodb_adaptive_flushing_lwm(10)

● (Current LSN – Oldest dirty pages' LSN) / LOG CAPACITY
● How often to adjust flushing: innodb_flush_avg_loops(30)
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Adaptive Flushing(Cont.)

● innodb_lru_scan_depth(1024)
● How deep page cleaner thread will examine the tail of LRU

● innodb_io_capacity limits the pages to be flushed, evaluated 
about every second
● Should be comparable with the capable of disk IO per second
● Set higher if disk is fast or it's a write workload
● But don't set too high (>=20000) unless it's necessary
● innodb_io_capacity_max could be double

● innodb_flush_neighbors(1)
● Whether to flush (contiguous) dirty pages

● innodb_flush_method, O_DIRECT prevents double buffering
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Page Checksums

● To detect if page is corrupted
● Enable by innodb_checksums(ON)

● Calculated and updated when writing pages out
● Checked when page is read into BP
● Overhead is for sure
● There are kinds of algorithms

● innodb_checksum_algorithm
● 'Crc32' is faster than 'innodb'
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Double Write Buffer

● Pages could be partially flushed out to disk, which results in 
inconsistent pages

● Double write buffer resides in system tablespace
● Disk overhead and mutex contention
● Disable double write buffer if FS supports atomic writes, 

like Fusion IO NVMFS
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Recovery
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Checkpoint

● Fuzzy Checkpoint
● Dirty data pages would not be written out explicitly
● Just try a sync on possibly cached pages if necessary
● Redo logs will be flushed out

● Sharp Checkpoint
● Since redo log files have to be reused, so once no more rooms in the files, 

some redo logs should be freed
● At the mean time, related dirty pages have to be flushed out
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Shutdown

● Generally, dirty pages and redo logs are flushed during 
shutdown

● innodb_fast_shutdown(1)
● 0: slow(clean) shutdown, a full purge and change buffer merge
● 1: fast shutdown, skip above two operations
● 2: like a crash, just flush out the redo logs

● Basically, the faster server shuts down, the slower it 
restarts

● Please do a slow shutdown before upgrade/downgrade
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Redo Recovery

● Necessary after crash and fast_shutdown=2
● Start if redo logs found, find the latest checkpoint

● Find all tablespaces
● Applied pages in double buffer to tablespaces
● Scan and collect redo logs from latest checkpoint to the end
● Apply logs to data pages if necessary(LSN), no more logs written

● Factor of recovery time
● Number of redo logs have to be applied
● Number of dirty pages to be read
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Undo Recovery

● To logically rollback all not committed transactions
● Undo logs in undo tablespaces are also recovered in redo 

recovery
● Start after redo recovery finishes, resurrect all 

uncommitted transactions
● Roll back DD transactions one by one
● Then roll back user transactions

● Change buffer merge and purge delete-marked records will 
go on too
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Other features
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BLOB

● Storage depends on the row format
● If it's fully on overflow pages, it won't be read unless they are touched by 

the query.
● The shorter the row, the more rows in a page

● To fetch/update partial blob could be inefficient
● Especially when the BLOB is compressed

● Consider if storing blob into separate table is necessary
● In the same row, one large blob could be faster than several 

medium ones
● Many blobs can result in fragments and waste
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Native Partitioning

● Feature in 5.7
● Data are partitioned across every partition, each partition 

has the same table structure
● In-memory objects consumption
● More efficient if part of data are accessed only

● Types of partition: RANGE/LIST/HASH/KEY
● Different partitions can reside in different TABLESPACE and 

DATA DIRECTORY
● ALTER PARTITION

● Pay attention to operations which will copy data row by row, like 
REORGANIZE/COALESCE, etc.
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Table-level Compression

● ROW_FORMAT/KEY_BLOCK_SIZE
● These are applied to the whole table/tablespace

● Lossless zlib which implements LZ77
● To avoid recompression and Index page splits

● Delete-marked / modification log / padding
● innodb_compression_failure_threshold_pct(5)
● innodb_compression_pad_pct_max(50)

● Buffer Pool maintains both compressed/uncompressed 
pages, eviction depends

● Compressed pages could be written to redo logs



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

Transparent Page Compression

● Feature in 5.7
● It relies on sparse file and “hold punching” support
● It takes effect when sizeof(compressed page) <= 

innodb_page_size - file_system_block_size
● If compression fails, write the page out as is, otherwise, 

compress and release empty ending blocks
● ZLIB and LZ4 are now supported
● It doesn't work with table-level compression
● Currently, only innodb-file-per-table is supported
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Transparent Page Compression(Cont.)

● In Windows, make NTFS Cluster Size smaller
● Trade off between large page sizes and write amplification
● It can be observed by innodb_sys_tablespaces

● FS_BLOCK_SIZE: File system block size
● FILE_SIZE / ALLOCATED SIZE

● A table can consist of pages with different compression 
settings
● OPTIMIZE TABLE t
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Encryption

● Page-level encryption which only supports innodb-file-per-
table for now, feature in 5.7

● Two encryption keys
● master key and tablespace key
● Master key periodic rotation is rolled forward
● Keyring_file and keyring_okv plugins

● Encryption and decryption happen during IO
● Advanced Encryption Standard (AES) block-based encryption

● Electronic Codebook (ECB) / Cipher Block Chaining (CBC)
● Altering the encryption attribute requires COPY
● Encryption is done after compression



Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©Copyright  2016, Oracle and/or its affiliates. All rights reserved.  |©

Outside InnoDB
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Environment

● Hardware
● More powerful CPU
● More memory
● Proper malloc() lib, like jemalloc in Linux
● SSD/Fusion IO

● Software
● OS
● File System: ZFS, EXT4, etc.
● MySQL(different versions)
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Monitor

● Statistics
● Tables in INFORMATION_SCHEMA show lots of statistics/options of all 

TABLES/TABLESPACES, etc.
● Dynamic statistics

● SHOW ENGINE INNODB STATUS
● SHOW STATUS LIKE '…'
● INFORMATION_SCHEMA.inntdb_metrics table has all counters for InnoDB 

status and more
● Records of tables in Performance Schema, monitor ALTER TABLE
● MySQL Enterprise Monitor

● Also monitor OS status
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Benchmark

● Do benchmark before running servers online
● Some generic benchmarks

● Sysbench
● DBT2
● LinkBench
● ...
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A sample my.cnf
innodb_file_per_table = 1
innodb_log_file_size = 1024M
innodb_log_buffer_size = 64M
innodb_log_files_in_group = 3 / 12 / …
innodb_checksum_algorithm = none / 
crc32
innodb_doublewrite = 0 / 1
innodb_flush_log_at_trx_commit = 2 / 1
innodb_flush_method = O_DIRECT
innodb_use_native_aio = 1
innodb_adaptive_hash_index = 0
innodb_spin_wait_delay = 6
innodb_adaptive_flushing = 1

innodb_flush_neighbors = 0
innodb_read_io_threads = 16
innodb_write_io_threads = 16
innodb_io_capacity = 15000
innodb_max_dirty_pages_pct = 90
innodb_max_dirty_pages_pct_lwm = 10
innodb_lru_scan_depth = 4000
innodb_page_cleaners = 4

innodb_purge_threads = 4
innodb_max_purge_lag_delay = 30000000
innodb_max_purge_lag = 1000000
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Thanks
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