
© C o p y r ig h t 2 0 1 8 P iv o t a l S o f t w a r e , In c . A l l r ig h t s R e s e r v e d . V e r s io n 1 .0

How to Properly Blame Things for
Causing Latency
·An Introduction to Distributed Tracing and Zipkin

@Adrian Cole
works at Pivotal
works on Zipkin

Introduction

introduction

understanding latency

distributed tracing

zipkin

demo

wrapping up

@adrianfcole
spring cloud at pivotal
focused on distributed tracing
helped open zipkin

Distributed Tracing

introduction

distributed tracing

zipkin

demo

wrapping up

@adrianfcole

What is Distributed Tracing?

Distributed tracing tracks production requests as they touch
different parts of your architecture.

Requests have a unique trace ID, which you can use to lookup a
trace diagram, or log entries related to it.

Causal diagrams are easier to understand than scrolling through
logs.

Example Trace Diagram

Wire Send Store

Async StoreWire Send

POST /things

POST /things

Why do I care?

- Reduce time in triage by contextualizing errors and delays

- Visualize latency like time in my service vs waiting for other services

- Understand complex applications like async code or microservices

- See your architecture with live dependency diagrams built from traces

Example Service Diagram

A tracing system can draw
your service dependencies!

It might resemble your
favorite noodle dish!

Distributed Tracing Vocabulary

A Span is primarily the duration of an operation.

A Trace links all spans in a request together by cause.

Span
Trace

wombats:10.2.3.47:8080

A Span is an individual operation

Server Received a Request

POST /things

Server Sent a ResponseEvents

Tags

Operation

remote.ipv4 1.2.3.4
http.request-id abcd-ffe
http.request.size 15 MiB
http.url …&features=HD-uploads

Trace shows each operation the request caused

Wire Send Store

Async StoreWire Send

POST /things

POST /things

Tracing is capturing important events

Wire Send

Store

Async Store
Wire Send

POST /things

POST /things

Tracers record time, duration and host

Wire Send Store

Async StoreWire Send

POST /things

POST /things

Tracers don’t decide what to record, instrumentation does.. we’ll get to that

Tracers send trace data out of process

Tracers propagate IDs in-band,
to tell the receiver there’s a trace in progress

Completed spans are reported out-of-band,
to reduce overhead and allow for batching

Tracer vs Instrumentation

A tracer is a utility library similar to metrics or logging libraries.

Instrumentation is framework code that uses a tracer to
collect details such as the http url and request timing.

Instrumentation
decides what to
record

Instrumentation
decides how to
propagate state

Instrumentation is
usually invisible to
users

Zipkin
introduction

distributed tracing

zipkin

demo

wrapping up

@adrianfcole

Zipkin is a distributed tracing system

Zipkin lives in GitHub

Zipkin was created by Twitter in 2012 based on the Google
Dapper paper. In 2015, OpenZipkin became the primary fork.

OpenZipkin is an org on GitHub. It contains tracers, OpenApi spec,
service components and docker images.

https://github.com/openzipkin

https://github.com/openzipkin

Zipkin Architecture

Amazon
Azure
Docker
Google

Kubernetes
Mesos
Spark

Tracers report spans HTTP or Kafka.

Servers collect spans, storing them in

MySQL, Cassandra, or Elasticsearch.

Users query for traces via Zipkin’s Web
UI or Api.

https://github.com/openzipkin/zipkin-aws
https://github.com/openzipkin/zipkin-azure
https://github.com/openzipkin/docker-zipkin
https://github.com/GoogleCloudPlatform/stackdriver-zipkin
https://github.com/fabric8io/kubernetes-zipkin
https://github.com/elodina/zipkin-mesos-framework
https://github.com/openzipkin/zipkin-sparkstreaming

Zipkin has starter architecture

Tracing is new for a lot of
folks.

For many, the MySQL option
is a good start, as it is familiar.

services:
storage:
image: openzipkin/zipkin-mysql
container_name: mysql
ports:
- 3306:3306server:

image: openzipkin/zipkin
environment:
- STORAGE_TYPE=mysql
- MYSQL_HOST=mysql

ports:
- 9411:9411

depends_on:- storage

Zipkin can be as simple as a single file

$ c u r l - S L ' h t t p s : / / s e a r c h . m a v e n . o r g / r e m o t e _ c o n t e n t ? g = i o . z i p k i n . j a v a & a = z i p k i n - s e r v e r & v = L A T E S T & c = e x e c ' > z i p k i n . j a r

$ S E L F _ T R A C I N G _ E N A B L E D = t r u e j a v a - j a r z i p k i n . j a r

* * * * * * * *
* * * *

* *
* * * *

* * * *
* * * *

* * * *
* * * * * * * *

* * * *
* * * *

* * * * * * * *
* * * * * * * * * * * * *

* *
* * * * * * * * * * * * * *

* * * * * * * *
* *

* *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

: : P o w e r e d b y S p r i n g B o o t : : (v 1 . 5 . 4 . R E L E A S E)

2 0 1 6 - 0 8 - 0 1 1 8 : 5 0 : 0 7 . 0 9 8 I N F O 8 5 2 6 - - - [m a i n] z i p k i n . s e r v e r . Z i p k i n S e r v e r : S t a r t i n g Z i p k i n S e r v e r o n a c o l e w i t h P I D 8 5 2 6 (/ U s e r s / a c o l e / o s s / s l e u t h - w e b m v c -
e x a m p l e / z i p k i n . j a r s t a r t e d b y a c o l e i n / U s e r s / a c o l e / o s s / s l e u t h - w e b m v c - e x a m p l e)

— s n i p —

$ curl -s localhost:9411/api/v2/services|jq .
[

"gateway"
]

Brave: the most popular Zipkin Java tracer

• Brave - OpenZipkin’s java library and instrumentation
• Layers under projects like Armeria, Dropwizard, Play

• Spring Cloud Sleuth - automatic tracing for Spring Boot
• Includes many common spring integrations
• Starting in version 2, Sleuth is a layer over Brave!

c, c#, erlang, javascript, go, php, python, ruby, too

Some notable open source tracing libraries

• OpenCensus - Observability SDK (metrics, tracing, tags)
• Most notably, gRPC’s tracing library
• Includes exporters in Zipkin format and B3 propagation format

• OpenTracing - trace instrumentation library api definitions
• Bridge to Zipkin tracers available in Java, Go and PHP

• SkyWalking - APM with a java agent developed in China
• Work in progress to send trace data to zipkin

• Kamon - AkKa Monitoring: trace and metrics specializing in scala
• Uses B3 propagation and has a Zipkin export plugin

Demo

Wrapping up

© Copyright 2017 Pivotal Software, Inc. All rights Reserved.

Transforming How The World Builds Software

