

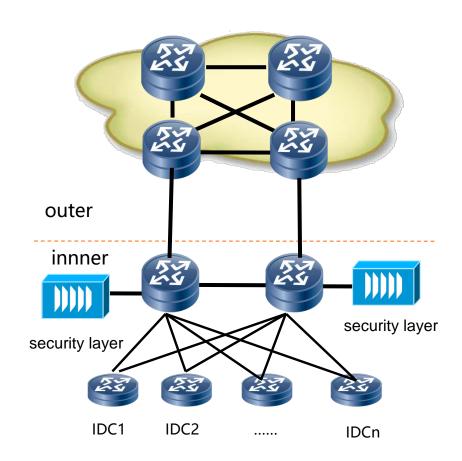
DPDK based security service layer on datacenter

haohao zhang

主办方: (intel)

Agenda

- what and why of the security service layer
- how to design
- performance optimize
- evolution for large volume



where is the layer

security on host:

different OS CPU used must be controled complex policy

challenges of deploy on network perimeter:

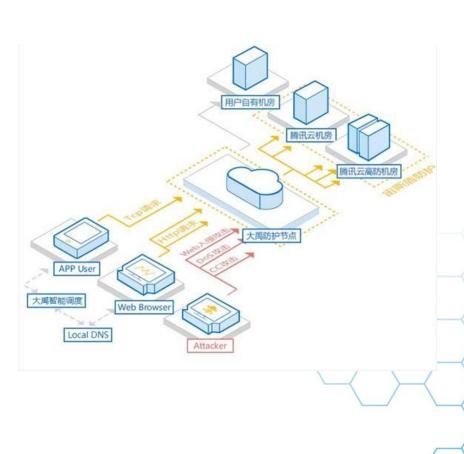
traffic control foward information--act like a router performace --latency, Throughput debug

support security function

Anti-DDoS WAF **IDS Forensics**

	multi core platform	DPDK on x86
Performance	high	middle
Reliability on massive deployment	high malfunction ratio	good
Devepment cost	high	middle
Debug	hard	midlle

- 1 Reliability is very important when you need manage thousands of devcies.
- 2 Some weird problem leads to hareware like fiber



deployment status

- covery all the perimeter globally
- Thousands of DPDK based security device
- support all type of business,incldue web,game,video...
- continue increasing

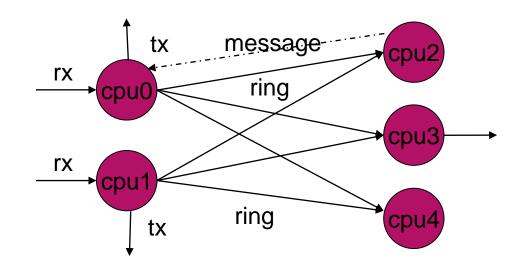
the software architecture

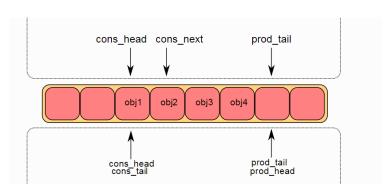
Security process	1
Security forward TCP/Ip stack Monitor	Log
	TAP
Packet process	
Route Forward Monitor KNI	Manage
DPDK	Linux Kernel
Socket0 Socket1	coreN

multi process model

- primary process is stable
 packet forwarding information
 router inforamtion
 memory management
 basic statistic

 TAP management
- secondary process changes quickly doing the security logical update frequently





fake dequeue

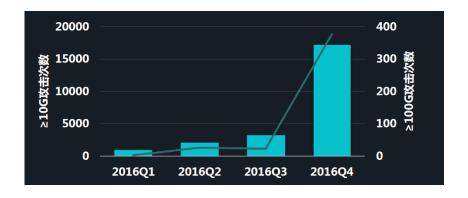
- 1. avoid packet losing after secondary process crash
- not in high performance mode

- ① secondary read head and tail of ring
- 2 secondary copy mbuf without dequeue
- 3 secondary process packet
- 4 use volitile varible notify the primary process to dequeue

performance optimization

- Local varible VS global varible
- Hyper Thread for different scenarios:
 whether threads number need larger than physical thread
 pipiline mode
- sometimes tx queue number can affect
- assemble language can be used for critical function
- memcpy cost

	phy0	 phy1
core0	0 # 24	12 # 36
core1	1 # 25	13 # 37
core2	2 # 26	14 # 38
core3	3 # 27	15 # 39
core4	4 # 28	16 # 40
core5	5 # 29	17 # 41
core6		
core7		
core8	6 # 30	18 # 42
core9	7 # 31	19 # 43
core10	8 # 32	20 # 44
core11	9 # 33	21 # 45
core12	10 # 34	22 # 46
core13	11 # 35	23 # 47





evolution for large volume

- ▶ 100G NIC
- FPGA
- CPU on other NUMA Node

Thanks!!