
Wait/Wakeup and
waketorture

Boqun Feng (Intel)

A bit about me
● Working for Intel OTC VMM Enabling Team

○ UMIP/SGX on xen

● Dedicated Reviewer for ATOMIC INFRASTRUCTURE
● Co-maintainer of restartable sequence(not merged)

○ git://git.kernel.org/pub/scm/linux/kernel/git/rseq/linux-rseq.git
● Co-maintainer of Linux Kernel Memory Model(WIP)

How many of you...
● Know about multithreading?
● Have used or learned primitives in <linux/wait.h>?
● Have read Documentation/memory-barriers.txt?

Warm-up: Is this safe?
struct wait_queue_head q; // a queue for block tasks

<TASK A>
1 DEFINE_WAIT(wait); // define a wait structure
2 add_wait_queue(&q, &wait); // add this task to queue
3 while (!condition) { // check condition
4 prepare_to_wait(&q, &wait, TASK_UNINTERRUTBILE);
5 schedule(); // ask scheduler to schedule this out
6 }

 // do something after condition is satisfied

<TASK B>
1 condition = true; // the condition is satisfied.
2 wake_up(q); // wake up!

Warm-up: What if this happens?
<TASK A>
 DEFINE_WAIT(wait);
 add_wait_queue(&q, &wait);
 while (!condition) {

<SWITCH TO TASK B>
 condition = true;
 wake_up(q);

<Back to TASK A>
 prepare_to_wait(&q, &wait, TASK_UNINTERRUTBILE);
 schedule();
 }

Warm-up: Try to fix. Work?
<TASK A>
 DEFINE_WAIT(wait);
 add_wait_queue(&q, &wait);
 while (!condition) {

<Switch TO TASK B>
 condition = true;
 wake_up(q);

<Back to TASK A>

+ if (condition)
+ break;

 prepare_to_wait(&q, &wait, TASK_UNINTERRUTBILE);
 schedule();
 }

Warm-up: Try to fix. Work?(cont.)
<TASK A>
 DEFINE_WAIT(wait);
 add_wait_queue(&q, &wait);
 while (!condition) {

+ if (condition)
+ break;

<Switch TO TASK B>
 condition = true;
 wake_up(q);

<Back to TASK A>
 prepare_to_wait(&q, &wait, TASK_UNINTERRUTBILE);
 schedule();
 }

Warm-up: Try to fix
● If the waker sets the @condition to true before the wakee tries to block:

○ Either the wakee would observe the @condition and not block(Trivial)
○ Otherwise the waker must prevent the wakee from blocking forever.

cond!=1
cond=1

block

running

cond!=1

cond=1

block

wakeup

1. 2.

wakeup

Warm-up: How?
struct wait_queue_head q;

<TASK A>
 DEFINE_WAIT(wait)
 add_wait_queue(q, &wait);
 while (!condition) {
 prepare_to_wait(&q, &wait, TASK_UNINTERRUTBILE);
+ if (condition)
+ break;
 schedule();
 }

<TASK B>
 condition = true;
 wake_up(q);

Memory Model 101: Message Passing

Wx=1

Wy=1

Ry=1

Rx=0?

rffr
??? ???

prepare_to_wait() magic #1
current->on_rq = 1;
<???>
prepare_to_wait(...):
 current->state = !TASK_RUNNING;

wake_up(...):
 try_to_wake_up():

if (->state)
 goto out; // give up waking
smp_rmb();

 if (->on_rq);
 ->state = TASK_RUNNING;

schedule():
 if (->state)
 deactivate_task(); // block

Bug: the smp_rmb() was missing
● Spotted at 2016
● Fixed by commit 135e8c9250dd ("sched/core: Fix a race between

try_to_wake_up() and a woken up task")

try_to_wake_up() magic #1
wake_up(...):
 try_to_wake_up():

schedule():
 rq_lock();
 if (->state)
 deactivate_task(); // block
 ->on_rq = 0;
 <...>
 smp_store_release(->on_cpu, 0);
 rq_unlock();

 rq_lock()
 if (->on_rq);
 ->state = TASK_RUNNING;
 rq_unlock();
 smp_load_cond_acquire(->on_cpu, 0)

Memory Model 101: Store Buffer

Wx=1

Ry=0

Wy=1

Rx=0?

frfr

??? ???

prepare_to_wait() magic #2
prepare_to_wait(...):
 smp_store_mb(->state, state):
 current->state = !TASK_RUNNING;
 smp_mb();

if (cond)
 break; // stop blocking

cond = 1;
wake_up(...):
 try_to_wake_up():

<???>
if (->state)
 goto out; // give up waking
<continue to wake up>

Bug: Missing a smp_mb()
● Spotted at 2017
● Fixed by commit 35a2897c2a30 ("sched/wait: Remove the lockless

swait_active() check in swake_up*()")

prepare_to_swait(...):
 raw_spin_lock_irqsave(...);
 list_add(&wait, &q);
 smp_store_mb(->state, state):
 raw_spin_unlock_irqsave(...);
if (cond)
 break; // stop blocking

cond = 1;
swake_up():
 if (swait_active()) // list_empty()
 raw_spin_lock_irqsave(...);
 swake_up_lock();

Kernel API for wait/wakeup
● wake_up*() and wait_event*()
● swake_up*() and swait_event*()

○ Bounded IRQ and lock hold time.

● swake_event_idle()
○ Do not contribute load to system

● complete() and wait_for_comletion()
○ Guarded by CROSS_RELEASE

● For more
○ "Much Ado About Blocking: Wait/Wake in the Linux Kernel" by Davidlohr Bueso.

Ordering implied by wait/wakeup
● No ordering outside the wait/wakeup subsystem

○ The wait and wakeup may not happen

● If a task is actually woken by another, the wakee is guaranteed to observe all
the states of the waker before the wakeup

○ Program Order Guarantee
○ so do not put smp_*mb() between "cond=1" and "wake_up()" simply for wakee to observe

@cond.

waketorture
● Proposed by Paul Mckenney
● Basic idea:

○ multiple tasks wait for/wake up each other
○ doing CPU online/offline in the same time
○ introduce jitters at host

struct wake_torture_ops {
 signed long (*wait)(signed long timeout);
 const char *name;
}

static int wake_torture_wait(void *arg); // nr_cpus threads
static int wake_torture_checker(void *arg);
static int wake_torture_onoff(void *arg);

waketorture
● Improvement

○ make it work ;-)
○ Dynamic wakeup topology

static int cond[...]; // the cond a thread is waiting
static int to_wake[...]; // the cond a thread is to wake up

Example:
cond: [0, 1, 2, 3]
to_wake: [1, 2, 3, 0]

A circular wait/wake topology.

waketorture
● Still WIP -- To detect the bugs we mention before.
● Could detect timer related wait/wake bug:

○ https://marc.info/?l=linux-sparc&m=150323406031064&w=2

● Need more real world scenarios of wait/wake bugs

https://marc.info/?l=linux-sparc&m=150323406031064&w=2

Summarize
● Understand synchronization primitives via memory model
● Try to fix the section for wait/wake in memory-barriers.txt
● Feedback to waketorture

Q & A
Thanks!

LOCKDEP_CROSSRELEASE

mutex_lock(L1);

wait_for_completion(C1);

mutex_lock(L1);
<...>
mutex_unlock(L1);
complete(C1);

Some restartable sequence
● Have you ever dreamed about userspace preemption disable?
● Restartable sequence(rseq)

○ per-cpu atomics
○ poor man's transactional memory
○ give a little bit power to userspace to run code without be worried with preemption.

Some restartable sequence
● userspace register an abi data structure via syscall
● set the (start_ip, post_commit_ip, abort_ip) to the data structure
● run some code at [start_ip, post_commit_ip)
● if a preemption happens in the middle, set the userspace ip to abort_ip
● the instruction before post_commit_ip indicating the finish of some critical

section.

Some restartable sequence
Performance numbers(from Mathieu, on Xeon E5-2630)

Some restartable sequence
I do not hate this series, and I'd be happy to apply it, but I will repeat what I've
asked for EVERY SINGLE TIME this series has come up:

I want to see real numbers from real issues.

 -- Linus Torvalds

So help or trying out is welcome!

