
Hyperscan, Turbo Network
Security via SW Algorithm

HYPERSCAN.IO

Network Platforms Group

Legal Disclaimer

Technology Disclaimer:

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or
service activation. Performance varies depending on system configuration. No computer system can be absolutely secure.
Check with your system manufacturer or retailer or learn more at [intel.com].

Performance Disclaimers:

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to
you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual
performance.

General Disclaimer:

© Copyright 2018 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, the Intel Inside logo, Intel. Experience
What’s Inside are trademarks of Intel. Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as
the property of others.

2

Network Platforms Group 3

Agenda

▪ Hyperscan Overview

▪ Hyperscan Internals

▪ Hyperscan Future

▪ Case study: Snort and Suricata integrations

Network Platforms Group

Intel® Xeon® Scalable Processors
Intel® Resource Director Technology makes the
processor cache the primary destination and
source of I/O data rather than main memory

4

Intel Ingredients for Workload Optimization

Best-in-Class FPGA Technology
Intel’s leading-edge programmable logic

solutions enable users to develop customized
systems based on specific application

requirements.

Intel® Ethernet Controller 710
Family
10GbE, 25GbE, & 40GbE connectivity for
Enterprise, Cloud and Communications

Intel Ethernet Converged
Network Adapter
X710/XXV710 / XL710 Family

Intel® QuickAssist
Technology

Offloads packet processing technology
thereby reserving processor cycles for

application and control processing

Intel® Communications Chipset 89xx

Intel® C610 Series Chipset Chipset

Network
Acceleration

Software

DPDK & Hyperscan
Packet Processing Software creates the

foundation for NFV / SDN, server
virtualization and vSwitch optimizations.
Hyperscan offers application level DPI.

Compute FPGAs

Network Platforms Group 5

HYPERSCAN OVERVIEW

Network Platforms Group 6

Hyperscan Overview

▪ Hyperscan is a regular expression matching library

– Released by Intel under a 3-clause BSD license (permissive open source)

– Available at https://www.hyperscan.io/

– Software-only, IA specific (requires SSSE3 as a baseline!)

– Multiple pattern matching and streaming (definitions to follow)

▪ Customers:

– 40+ commercial customers including Tier 1 networking vendors

– Widely used in network security solutions including WAF, IDS/IPS, etc.

– One of the best algorithms available, and it is free

https://www.hyperscan.io/

Network Platforms Group

A few samples just so we know what we're talking about

▪ /abc.*def/s – “abc followed by def”

▪ /\s+/s – “one or more white space characters”

▪ /foo[^\n]{400,600}bar/s – “foo followed by 400 to 600 characters that aren’t a newline, followed by bar”

▪ /[^a]...[^e]...[^i]...[^o]...[^u]/s – “something that isn’t a ‘a’, followed by three characters,
followed by something that isn’t a ‘e’, followed by three characters, followed by something that isn’t a ‘i’, etc.

The libpcre library is our standard; we use this for a semantic basis for fuzzing in automated testing

Hyperscan use case: anywhere from 1 to tens of thousands of these

Regular Expressions

Replace PCRE with Hyperscan for Performance needs.
Please find how-to on DPDK wechat blogs.

Network Platforms Group 8

Many Dimensions of Performance Optimization

Not just raw matching speed… we also focus on:

▪ Streaming and non-streaming (“block mode”) performance

▪ Small writes (64 byte packets == ~12 byte scanning payloads, pattern matching on
individual fields – e.g. “User Agent”)

▪ Performance under high match rates (1 match per byte)

▪ Scaling to multiple cores/threads (goal is close to linear)

▪ Pattern compile time (goal: keep under 10s, 1s for moderate pattern set sizes)

▪ Bytecode size, stream state size, scratch space size

▪ …

Network Platforms Group 9

Software Consumption
Open source integrations

Operating
Systems

Intel
Architectures

Applications

Language
Bindings

Integrated Open Source Solutions

Firewall, IDS/IPS, SD-WAN, Email Virus,
Web Security, Database, Network visibility

...

Support range from Atom to Xeon processor

...

Linear core scalability

Use Cases

OS X

Network Platforms Group

▪ Block Mode
‒ All data to scan is obtained in a block before scanning

▪ Vectoring Mode
‒ All data to scan is obtained and scattered into a set of blocks before scanning

▪ Streaming Mode
‒ Not all data is obtained before scanning, instead the data is present on a stream of sequential

writes
‒ Can’t hold on to old data! Old stream writes are gone
‒ Streaming requires only a small, fixed amount of stream state (can throw away old writes)
‒ Streaming works without compromise (no fixed size windows, no limited number of writes)
‒ Identical semantics regardless of stream write grouping

Get Started: Mode Selection

Network Platforms Group 11

Hyperscan Operation: Compile Time

▪ Take an input set of patterns

▪ Compile to a ‘bytecode’ (optimizing
as we go)

▪ Compiler:

– C++ implementation (C API)

– Dynamic memory allocations

– Unpredictable compile times

– “Bad news in advance”:
Unsupported patterns, large
bytecode, large stream state Array of patterns, IDs, flags

Regex #1
/foo.*bar/s

Regex #2
/[a-f]{6,12}/i

Regex #3
/^GET\s.*HTTP/m

Hyperscan compiler
hs_compile_multi

Database Bytecode
hs_database_t

Mode Flags
(streaming/block,

platform, …)

Network Platforms Group 12

Hyperscan Operation: Run-time

▪ Run-time components:

– Scratch space (working
memory) – read/write

– Compiled bytecode – read
only

– Input data

▪ Matches returned via callback

▪ Only predictable memory
allocations (nothing dynamic)

▪ Runtime in C only

Database Bytecode
hs_database_t

HyperScan Runtime
Block Mode Scan

hs_scan

Data Block
const char * data

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Allocate Scratch
hs_alloc_scratch

Scratch Space
hs_scratch_t

Network Platforms Group 13

Hyperscan Operation: Run-time (streaming)

▪ As per block mode, but
we must maintain
stream state

– Open, write, close
operations

– Also various
shortcuts (reset a
stream)

Database Bytecode
hs_database_t

Open Stream
hs_open_stream

Stream State
hs_stream_t

Data Block 1
const char *

Data Block 2
const char *

Data Block 3
const char *

HyperScan Runtime
Streaming Mode Scan
hs_scan_stream

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Blocks passed in order
to hs_scan_stream

Passed to hs_scan_stream
for each data block

Close Stream
hs_close_stream

Can produce matches at end-of-data
from end-anchored patterns

Allocate Scratch
hs_alloc_scratch

Scratch Space
hs_scratch_t

Network Platforms Group 14

HYPERSCAN internals

Network Platforms Group 15

SIMD Example: Literal Matching Acceleration

Accelerate searching literal “foo”

// Compare data with masks
res1 = _mm_cmpeq_epi8(input, mask1)
res2 = _mm_cmpeq_epi8(input, mask2)

// Shift result2 right by 1 byte
_mm_srli_si128(res2, 1)

// And result1 and result2
and_res = _mm_and_si128(res1, res2)

// move mask to get bit representation
final = _mm_movemask_epi8(and_res)

// Get trailing number of zeros
pos = __builtin_ctz32(final);

mask1

mask2

input

res1

res2

128 bit

res2 (shifted)

and_res

Low 16 bit

final

Network Platforms Group 16

Stream State Compression

Best-effort stream state compression
• New feature to reduce the memory footprint for streaming mode
• Allow stream state compression and decompression at stream boundaries
• New APIs: hs_compress_stream() for compression

hs_expand_stream() for decompression

Network Platforms Group 17

Approximate Matching

Levenshtein distance

▪ Allow the user to request all matches that are a given edit
distance from an exact match for a pattern.

e.g. Pattern /foo(bar)+/ within edit distance 2.
It matches when scanned against foobar, foob0r, fobar, fooba,
f0obar, and anything else that lies within edit distance 2 for
the original pattern (foobar in this case).

Example of conversion for approximate matching:
Pattern:/^abcd/ Edit distance = 1

approximate matching off

approximate matching on

Network Platforms Group 18

Hsbench, Hyperscan Performance utility
▪ A new standard Hyperscan benchmarking tool - Hsbench

– Provide an easy way to measure Hyperscan's performance for a particular set of patterns and corpus of data to be scanned.

– Sample pattern-sets and corpora are available at
https://01.org/downloads/sample-data-hyperscan-hsbench-performance-measurement

$ bin/hsbench -e snort_literals -c hsbench-alexa200.db -N
Signatures: snort_literals
Hyperscan info: Version: 4.7.0 Features: AVX2 Mode: BLOCK
Expression count: 3,116
Bytecode size: 923,384 bytes
Database CRC: 0x911ecd2f
Scratch size: 5,545 bytes
Compile time: 0.115 seconds
Peak heap usage: 195,702,784 bytes

Time spent scanning: 6.716 seconds
Corpus size: 177,087,567 bytes (130,957 blocks)
Matches per iteration: 637,380 (3.686 matches/kilobyte)
Overall block rate: 389,958.01 blocks/sec
Mean throughput (overall): 4,218.59 Mbit/sec
Max throughput (per core): 4,630.85 Mbit/sec

Network Platforms Group 19

Hscheck and Hscollider

Hscheck
‒ Allow the user to quickly check

whether Hyperscan supports a
group of patterns.

Hscollider
‒ Provide a way to verify

Hyperscan’s matching behavior
against PCRE.

Network Platforms Group 20

Logical combination of patterns (In Development)

▪ Report matches only when find defined logical
combination of patterns

▪ A set of patterns should match (unordered AND)

▪ Patterns should not match (NOT)

▪ Any one of a given set of patterns should match
(OR)

And combinations of the above, like
(pattern0 OR pattern1 AND pattern2) AND
(NOT pattern3)

Network Platforms Group 21

Chimera (In Development)

• Chimera: a hybrid of libpcre and Hyperscan

‒ Support full libpcre syntax

‒ Support multiple pattern matching at best effort

‒ Take advantage of performance benefits of Hyperscan

Chimera Compile Time Chimera Run-time

Network Platforms Group 22

HYPERSCAN FUTURE

Network Platforms Group 23

Future Roadmap

• Hscheck
• Hscollider
• Hsdump
• Bug fix for C++, fat

runtime Init as
share lib

• Logical Combination
• Chimera
• DFA Wide State
• Windows Support

• WAF - ModSecurity/Hyperscan Support.
• WAF - Naxsi/Hyperscan Support
• Multi-Top DFA
• AVX512 / vBMI

Hyperscan4.7
(Shipped)

Hyperscan4.8
(In development)

Hyperscan4.9
(in planning)

Q1’18 Q2’18 Q3’18 Q4’18

Hyperscan5.0
(Directional)

• ACL Matcher
• AVX512
• vBMI

2019

nDPI/Hyperscan Integration

* Hyperscan is supported by Fedora/Debian/Ubuntu/Gentoo/Arch Linux, FreeBSD, Homebrew(macOS), VMWARE environment already
* Hyperscan is supported in all Intel Platform from ATOM to Xeon Scalable Family, in both Virtualized & Container Environment

New DPI/Hyperscan Solution Reference

Security Analytic in Container, Cloud Native. DPDK & FD.io Integration

Network Platforms Group 24

CASE STUDY: SNORT AND
SURICATA OPEN SOURCE
IDS/IPS

Network Platforms Group 25

Snort Status

Two integrations: integration into Snort 2.9 series and Snort 3 aka
Snort++

▪ Snort 2.9 integration (Intel)

– Uses Hyperscan as multiple literal matcher aka “MPSE”

– Uses Hyperscan as single literal matcher (!!)

– Uses Hyperscan as regex matcher

– Not upstreamed – we ship patch

▪ Snort 3 integration (Cisco)

– Experimental – allows explicit regular expressions in the
‘multiple matcher’

Network Platforms Group 26

Detection Engine Integration

Multiple literal matching code snippet:

typedef struct _HyperscanContext {
hs_scratch_t *scratch;

} HyperscanContext;

typedef struct _HyperscanPm {
hs_database_t *db;
HyperscanContext *ctx;
HyperscanPattern *patterns;
…

} HyperscanPm;

typedef struct HyperscanCallbackContext_ {
const HyperscanPm *pm;
void *data;
int (*match)(void *id, …);
int num_matches;

} HyperscanCallbackContext;

Network Platforms Group 27

Detection Engine Integration

static int HyperscanBuild(HyperscanContext *ctx,
HyperscanPm *pm) {

hs_compile_ext_multi(patterns, flags, ids, ext,
num_patterns,
HS_MODE_BLOCK,
NULL,
&(pm->db),
&compile_error);

hs_alloc_scratch(pm->db,
&pm->ctx->scratch);

}

int HyperscanSearch(HyperscanPm *pm, …) {
HyperscanCallbackContext ctx;
hs_scan(pm->db, (const char *)t, tlen, 0,

pm->ctx->scratch, onMatch, &ctx);
return ctx.num_matches;

}

static void HyperscanCleanup(int unused,
void *data) {

hs_free_scratch(contentScratch);
contentScratch = NULL;

}
void HyperscanFree(HyperscanPm *pm) {

hs_free_database(pm->db);
}

Network Platforms Group

Network Based/ 1C1T/ HTTP Enterprise PCAP/ 8683 Patterns
Intel(R) Xeon(R) CPU E5-2658 v4 @ 2.30GHz

Observation: Snort with Hyperscan shows
~6x performance over Unmodified Snort

1/3 of memory footprint

108

646

0

100

200

300

400

500

600

700

Th
ro

u
gh

p
u

t(
M

b
p

s)

Snort® Packet Analysis Throughput (Full Rules)

Unmodified Snort (Full Rules) Snort with Hyperscan (Full Rules)

Snort Performance

Network Platforms Group 29

Suricata Status

Integrated into Suricata mainline release

▪ Integrates into multiple literal matcher (MPM) – ~1000 literals
(scanned at around 14Gbps in isolation)

▪ Integrates as a single literal matcher

▪ Default option on supported platforms

Network Platforms Group

Network Based/ 1C1T/ HTTP Enterprise PCAP/ 13438 Signatures
Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

Observation: Suricata with Hyperscan shows ~3x performance over Suricata with
Aho-Corasick.

73

260

0

50

100

150

200

250

300

Th
ro

u
gh

p
u

t
(M

b
p

s)

Suricata® Packet Analysis Throughput (Full Rules)

ac (full rules) Hyperscan (full rules)

Suricata Performance

Network Platforms Group 31

CONCLUSIONS AND CALL
TO ACTION

Network Platforms Group 32

Conclusion

– Solid and mature (used in large number of commercial deployments)

– Delivers substantial speedups to open source IPS/IDS systems

– Still a WIP in many senses

Intel contacts for further support

Heqing.zhu@intel.com

Xiang.w.wang@intel.com

Jerry.zhang@intel.com

mailto:Xiang.w.wang@intel.com
mailto:Xiang.w.wang@intel.com
mailto:Jerry.zhang@intel.com

