
TiDB Lightning

huachao@pingcap.com

ACMUG&CRUG 2018



About me

● TiKV Engineer

● Wechat / Nice / PingCAP

● Work on distributed database, but ...

ACMUG&CRUG 2018



What is TiDB?

TiDB is an open source distributed NewSQL hybrid transactional 

and analytical processing (HTAP) database built by PingCAP.

ACMUG&CRUG 2018



What is TiDB Lightning?

A tool to import data into TiDB:

● 10x speed up

● more predictable performance

● support mydumper input format now, and other formats like 

CSV in the future

ACMUG&CRUG 2018



How we import data into TiDB before?

ACMUG&CRUG 2018



Mydumper / Myloader

Mydumper

=>

INSERT INTO `table` VALUES (...)

=>

Myloader / Loader

=>

TiDB
ACMUG&CRUG 2018



How does TiDB execute INSERT?

INSERT INTO `table` VALUES (...)

1. AST / Logical Plan / Physical Plan / Executor
2. Start a transaction (with a start timestamp)
3. Check constraints (PRIMARY KEY, UNIQUE INDEX …)
4. Encode record/index KVs
5. Prewrite
6. Commit (with a commit timestamp)

ACMUG&CRUG 2018



How does TiDB execute INSERT?

ACMUG&CRUG 2018



What’s the bottleneck here?

ACMUG&CRUG 2018



That’s all? Not even close ...

ACMUG&CRUG 2018



TiKV Architecture

Client

Store 1

Region 1

Region 3

Region 5

Region 4

Store 3

Region 3

Region 5

Region 2

Store 2

Region 1

Region 3

Region 2

Region 4

Store 4

Region 1

Region 5

Region 2

Region 4

RPC RPC RPC RPC

TiKV node 1 TiKV node 2 TiKV node 3 TiKV node 4

Placement 
Driver

PD 1

PD 2

PD 3

Raft 
Group

ACMUG&CRUG 2018



What should we consider here?

1. Consider a table with AUTO_INCREMENT PK
2. Raft replication
3. Region split
4. Region balance
5. RocksDB compaction
6. RocksDB rate limit / stall

ACMUG&CRUG 2018



How we import data with Lightning?

ACMUG&CRUG 2018



Skip Transaction (Convert SQL to KV)

INSERT INTO `table` VALUES (...)

● Record: 
● t_{table_id}_r_{handle_id} => {column*}
● Unique Index: 
● t_{table_id}_i_{index_id}_{column*} => handle_id
● Non Unique Index:
● t_{table_id}_i_{index_id}_{column*}_{handle_id} => {}

ACMUG&CRUG 2018



Split Region / Scatter Region

● Pre-split region to avoid data scan
● Pre-scatter region to avoid snapshot, data cleanup and 

hotspot

ACMUG&CRUG 2018



Ingest SST file into RocksDB

● No overlap between different SST files in a batch
● Avoid unnecessary compaction and write amplification
● Reduce Raft CPU consumption

ACMUG&CRUG 2018



How to Import an SST file into a Region?

● Send the SST to the region leader
● Rely on Raft log to replicate the SST to followers
● When the log entry has been committed, ingest the SST from 

the log to RocksDB
● But the SST can be large, which will block the Raft process

ACMUG&CRUG 2018



Import an SST file with two steps

● Upload the SST to all peers of the region, with the file 
checksum and the region epoch

● Issue an IngestSST Raft command with the SST metadata to 
the region

● When the command has been committed, ingest the 
uploaded SST file to RocksDB

● Rely on the checksum and the region epoch to guarantee 
data safety.

● The Raft log is small and the CPU consumption is low.ACMUG&CRUG 2018



TiDB Lightning Architecture

ACMUG&CRUG 2018



What are the difficulties here?

ACMUG&CRUG 2018



The bottleneck

● Not IO, not network, it’s CPU
● KVEncoder in TiDB Lightning
● Produce KV pairs in tens of MB/s with 32 cores

ACMUG&CRUG 2018



The workaround

● Optimize KVEncoder
● Split import task into batches, to cut the cost of TiKV 

Importer

ACMUG&CRUG 2018



The bottleneck-2

● KV pairs in a batch can be sorted, so the generated SST files 
will not overlap with each other.

● However, SST files in different batches can overlap, which 
can result in RocksDB compaction and rate limit.

ACMUG&CRUG 2018



The workaround-2

● Since we can not avoid the overlap, let’s face it
● Just ingest all SST files in level-0, and do a full compaction in 

the end

ACMUG&CRUG 2018



The bottleneck-3

If there are a lot of overlapped files in L0, creating a merging 
iterator for all files in L0 to check overlap can be very slow 
because we need to read and seek all files in L0.

ACMUG&CRUG 2018



The workaround-3

ACMUG&CRUG 2018



Another interesting optimization

● How to process a large sorted dataset concurrently?
● We need to cut the dataset into approximately equal ranges.
● We can scan the whole dataset first with a single thread to 

collect the split points.
● But that’s slow, and can be even slower if the dataset is 

compressed, because the CPU will be the bottleneck.

ACMUG&CRUG 2018



The size table properties

● We can add a table properties collector to RocksDB to collect 
sample points of the dataset

● When we need to split regions into approximately equal 
ranges, we can just calculate the boundaries from the size 
properties, which is very lightweight.

ACMUG&CRUG 2018



So, that’s all? Almost, until ...

ACMUG&CRUG 2018



A dinner conversation
A => Me, B => Business team

B: Hey, how does the lightning go?

A: It’s almost done, we can use it soon.

B: Awesome, how does it work?

A: ^%^#$%#$%&&(&(*^%^

B: All right, I just care about how to guarantee that it won’t miss any data?

A: Orz, let’s finish the dinner first.ACMUG&CRUG 2018



How to guarantee no data loss?
● We have ADMIN CHECK TABLE, but that can only check data consistency, 

and it’s a bit slow.
● We have SELECT count(*), but that can only check the number of rows.
● We can scan rows from the source and check them with the target one by 

one, but that speed is unacceptable with a large dataset.

ACMUG&CRUG 2018



ADMIN CHECKSUM TABLE
● Calculate a source checksum from the KV pairs converted from the source 

data.
● Calculate a target checksum from the KV pairs from the target data.
● Utilize the coprocessor framework to make it as fast as SELECT count(*).
● Use an order independent checksum algorithm for concurrency.
● The current algorithm: checksum = checksum ^ crc64(key + value)

ACMUG&CRUG 2018



All right, let’s import 655GB into TiDB

ACMUG&CRUG 2018



Split Region / Scatter Region

ACMUG&CRUG 2018



Import SST files into TiKV

ACMUG&CRUG 2018



That’s all? Yep, for now :)

ACMUG&CRUG 2018


