
OpenStack Nova

Scheduler 更新 &

Placement

徐贺杰 Alex Xu

OpenStack Nova Core reviewer

Agenda

• The change of Nova Scheduler…

• The new Placement service

Before Juno…

ConductorAPI Scheduler

Compute

1. User request
2. Submit new task

3. Request host that match
the filter properties,

instance flavor…etc

5. Call the selected compute

The new instance booting logic are mixed
In the Nova Scheduler

People wants a separate Scheduler

• A common scheduler, can be used by other OpenStack components

• Consider multiple resources, like, compute, storage, network…

• Then begin to refactor the nova scheduler for separating it out.

Gnatt
If you heard about it…
It dead..
Why?

Then Kilo…

ConductorAPI

Scheduler

Compute

1. User request 2. Submit new task

3. Request host that match the
request_spec

4. Returns selected hosts

5. Call the selected compute

• Defined a clear interface for the

scheduler

• Introduce the RequestSpec object.

Then Liberty…

• There isn’t too much progress

Looks into more detail

Conductor

Scheduler

Compute
2. Submit
new task

3. Request host that match the
request_spec

4. Returns selected hosts

5. Call the selected compute

6. Rescheduling after
claim resource failed
or other failure

DB

Hypervisor
Hypervisor

Hypervisor

Resource Claiming
1. Validate the resource usage
2. Update the resource Usage
3. Update to DB

1. Fetch newest compute node stats for each call
2. Filter and weight the host
3. Consuming the resource for selected host

Periodically update the node resource
with 60 seconds interval
1. Get hypervisor resource
2. Consuming the resource
3. Update to DB

SchedulerScheduler

Compute
Compute

The problems…

• The data model isn’t extendable

• Everything is in single `compute_nodes` table.

• New resource means new column in the table.

• Different resource managed by different way

• NUMA

• PCI Devices

• Ironic

• Flavor Extra Specs

• Capabilities in extra specs

• Shared storage pool

The Placement Service

• Lightweight (Basically, it is just a REST API server with few data

model)

• Horizontally Scalable

• Deploy in standard WSGI container: Runnable with Apache/Ngnix

• REST API

• Placement service still in Nova repo

• All the data are stored in the `nova_api` DB

• But Nova talk with Placement with REST API

• nova-compute begins to report resource to the Placement in

Newton

• nova-scheduler begins to cosult the Placement service in Ocata.

The placement service must be deployed since Ocata.

The Placement Service

• nova-compute begins to report

resource to the Placement in Newton

•nova-scheduler begins to consult the

Placement service in Ocata. The

placement service must be deployed

since Ocata.

Scheduler

Compute

Placement

Conductor
Report Compute
node resource
through Placement
REST API

Nova Scheduler
asks Placement to
return a set of
ComputeNode
match the
requirements

Nova Scheduler
still run its own
filter and weight

The New Data Model: Managing Quantitative and
Qualitative aspects of Resource

• Resource Provider

• Resource Class

• Inventory

• Allocation

• Trait

• Aggregate

The New Data Model: Resource Provider

• A resource Pool.

• A Resource Provider can provide multiple resources.

• The Compute Node is A Resource Provider. But, it is very

generic, it can be a Storage Pool, SRIOV NIC…etc

• Managing the Quantitative Qualitative aspects for the Resource

with Inventory, Allocation, ResourceClass, and Trait.

The New Data Model: Quantitative Aspect: Resource
Class

• The Resource Name for countable Resource

• Counted by integer amount

• Standard Resource Class: Defined by Nova Code

• VCPU, MEMORY_MB, DISK_GB…etc

• Custom Resource Class: Defined by Cloud Admin or Other Service.

• Prefix with CUSTOM_

• Ironic:

• CUSTOM_HIGH_PERFORMANCE_BAREMETAL

• CUSTOM_LOW_PERFORMANCE_BAREMETAL

The New Data Model: Quantitative Aspect: Inventory

• A resource provider can includes multiple inventories for

different resource class

• `total`

• `allocation_ratio`

• `step_size`, `min_unit`, `max_unit`

• You can’t request 1MB memory.

• You only can request 128MB, 256MB memory

• `reserved`: reserved resource for system

The New Data Model: Quantitative Aspect: Allocation

• Consumer indicates by UUID

• One consumer can consume resource from

multiple resource providers

The New Data Model: Quantitative Aspect: Example

• Inventory:

• RP: ResourceProvider1

• ResourceClass: VCPU

• Total: 64

• StepSize: 1

• MinUnit: 1

• MaxUnit: 62

• Reserved: 2

• AllocationRatio: 8

• Inventory :

• RP: ResourceProvider1

• ResourceClass: MEMORY_MB

• Total: 262,144

• StepSize: 128

• MinUnit: 256

• MaxUnit: 8192

• Reserved: 16,384

• AllocationRatio: 1

ResourceProvider1 for ComputeNode1

Let’s say: ComputeNode1 has 64 VCPUs and 262144MB memory. And
one instance boot up on the node, which consumed 8 VCPUs and
4096MB

• Allocation:

• RP: ResourceProvider1

• ResourceClass: VCPU

• used: 8

• Allocation:

• RP: ResourceProvider1

• ResourceClass: MEMORY_MB

• used: 4096

The New Data Model: Quantitative Aspect: Trait

• Standard Traits: defined in `os-traits` library

(https://github.com/openstack/os-traits)

• HW_CPU_X86_AVX

• HW_GPU_API_DIRECTX_V12

• HW_NIC_OFFLOAD_TSO

• Namespaces separated by ‘_’: HW_CPU, HW_GPU,

HW_STORAGE…

• Custom Traits: prefix with CUSTOM_

https://github.com/openstack/os-traits)
https://github.com/openstack/os-traits)
https://github.com/openstack/os-traits)
https://github.com/openstack/os-traits)

The New Data Model: Quantitative Aspect: Example

• Inventory:

• RP: ResourceProvider1

• ResourceClass: VCPU

• Total: 64

• StepSize: 1

• MinUnit: 1

• MaxUnit: 62

• Reserved: 2

• AllocationRatio: 8

• Inventory :

• RP: ResourceProvider1

• ResourceClass: MEMORY_MB

• Total: 262,144

• StepSize: 128

• MinUnit: 256

• MaxUnit: 8192

• Reserved: 16,384

• AllocationRatio: 1

ResourceProvider1 for ComputeNode1
With Traits:

HW_CPU_X86_AVX, HW_CPU_X86_AVX2

Let’s say: ComputeNode1 has 64 VCPUs and 262144MB memory. And one instance
boot up on the node, which consumed 8 VCPUs and 4096MB. The CPU of
ComputeNode1 supports CPU features AVX and AVX2

• Allocation:

• RP: ResourceProvider1

• ResourceClass: VCPU

• used: 8

• Allocation:

• RP: ResourceProvider1

• ResourceClass: MEMORY_MB

• used: 4096

The New Data Model: Shared Resource: Aggregate

• A collection of resource provider

• The ResourceProvider provides shared resource should tag

with trait ‘MISC_SHARED_VIA_AGGREGATE’

• Examples:

• Shared Storage Pool

• Routed Network

Aggregate

ComputeNod1 ComputeNod2 Shared Storage Pool

The New Data Model: Topology: Nested Resource
Provider

• Parent-Child provider relations

• NUMA

• SRIOV

• GPU

• FPGA

Compute
Node

NUMA Cell0

SRIOV
nic1

NUMA Cell1

SRIOV
nic1

CPU0 CPU1

VF0 … VF8 VF0 … VF8VCPU0 … VCPU8 VCPU0 … VCPU8

The status of placement development

• Traits API, Done in Pike

• The Shared Resource, Done in Pike

• The new Claim API, Done in Pike

• Claim in the scheduler, Done in Pike almostly

• Support Traits with Claim API

• Request Traits with Flavor

• Separate from Nova, in early Queens

• Nested Resource Provider, in Queens

• Notification

• Affinity/Anti-Affinity

The expected features…

• CPU features

• GPU support

• FPGA

• RDT

• Other OpenStack Services use Placement service

• Neutron

• Cinder

• Ironic

