AN EEHETEACMUG 2016 MySQLE S FASEIRRNDS, WRNVIAEERRE.

FREMySQLAEF4 (China MySQL User Group) E#RACMUG, ACMUGREE

FEMySQLEAREZIFEN—1TEAR1EX, ZOracle User Group Community#] .
MairaDB Foundation#[EIArTRYMySQLE R X, '-

=) I.I.I ﬂT

FfxiEMySQL, MariaDB, IAREM—EIEBMFREIEENFELR, &1
TIERRW, HFERAR, AFRIMAE.

BIIEFABAX, YOME[RIKEMYSQLEEEXZARMANA, HIESREME

RANH LR 7114‘1%}—:/]L$I] RASE.

BANHAEERATERI P AREPELATT O . BMNZESRARAR, TERR,
— T RIEEH, NMETABAIRE—FIGR.

ACMUGHY

&, i, Fio

d

=

KIEACMUGARE, SHSHEXED, RRHBRKAN, 2EFINMS, —EH[E
a7

RocksDB

Software Engineer, Database Engineering Team @ Facebook
Dec 10,2016 4 RocksDB

Agenda

1 Whatis RocksDB?
2 RocksDB Design

3 RocksDB Is Flash-Friendly

What is RocksDB?

- Network roundtrip =
Application Server 50 Micro sec

100 100
MmIiCcrosecs Nnanosecs

Latency dominated by network

Application

Server

100 100
MIiCrosecs Nnanosecs

v v

N

Networkrc Itrip =
50 MicC 3¢

Storage attached directly to application servers

What is RocksDB?

RocksDB As Embedded Storage

* Facebook: many backend services
* LinkedlIn’s FollowFeed

* Apache Samza

* |ron.io

* Tango Me

* Ceph

* And more...

RocksDB As Storage Engine of Data
Management Systems

Yahoo Sherpa

And many more...

RocksDB Design

RocksDB Architecture

Log-Structured Merge-Tree

Persistent
Memory
Storage
. _ < =
ante Active \ LOg
equest
Switch Switch
4
Immutable - Log
g
Read
D
Request
Flush

A

Compaction

\J

Write Path (1)

. Mermor Persistent
Y Storage
Write Active \
e
Request @ Log
o %
Switch Switch
- é
Immutable - L
og
g
Read
-
Request
Flush

Compaction

\J

Write Path (2)

/I\/Iemor Persistent
Y Storage
Write ive -
Request
Switch Switch
y
Immutable -]
08
8
Read -
Request - -’
Flush

Compaction

y

Write Path (3)

Write
Request

Read
Request

Memory

-

Persistent
Storage

> (Active \

G
Log

Switch

Log

Switch
QP | N
Immutable -
N /
Flush

File File File

A

Compaction

\J

Write Path (4)

Write
Request

Read
Request

—>

-

Memory

Active \

y

Immutable

Persistent

Storage
G

Switch

Log

Switch

Flush

A

Compaction

\J

Level-Based Compaction

Level O <i“mj>

LQVEIl File || File || File | | File 0

Level 2

Level 3

Level-Based Compaction

, Memory
File Write Buffer
Level O
<jmej>

LEVEIl File || File || File | | File 0

Level 2

Level 3

Level-Based Compaction

e

Level
Ve O : File >

Compact

I
LEVE|1I File || File || File | | File D

Level 2

Level 3

Level-Based Compaction

New
File

New
File

New
File

Level 1

@
New New
File File
&

Level 2

Level 3

Level-Based Compaction

~ Compact
Level 1 File || File H File ll File~:+ File>

Level 2

Level 3

Level-Based Compaction

LEVEIl File || File File 0

Level 2

Level 3

Level-Based Compaction

LEVEIl File || File || File | | File 0

L 4

Compact

Level 2

Level 3

Level-Based Compaction

Level O
LEVEIl File || File || File | | File)

Level 2

New New . . New New
File || File | =~ .~ eeeeee

File File - File File

New
File

Level 3

Example of Level Base Targets

' Memory
File Write Buffer

Level O <:Hm

Level 1 File || File || File | | File :l Target: 1 GB

Level 2

Level 3

Target: 100GB

Why is it flash-friendly?

Tuning Flexibility for Flash

Performance Metrics for applications on flash devices

* Write Amplification -wear out devices slower
* Space Amplification - store more data
* Read Amplification - better read IOPs

Compactions’ Impact on Amplifications

Memory Cache
Required for
ReadAmp =1

More Aggressive @ @ @
Compactions

Less Aggressive @ @ @
Compactions

Space Write

Amplification Amplification

Space Amplification is the bottleneck

* Example: our MySQL host on InnoDB:
* Read IOPS: < 10%
* Write IOPS: < 357
* Peak Write Bandwidth: < 25%

* CPU: <40%
* Write Endurance: last more than 3 years.

Everything except space has room to go!

Space Amplification of RocksDB

Only 10% Extra Space

How?

Space efficiency in LSM?

Write Buffer
iIn Memory

Persistent Store

10% Extra
Space

Size Similar to
User Data Size

How Did We Guarantee 10%?

A Space-Efficient Approach

Level N-2 - Target: 8.76 GB < 1%

evel N (RN c7oce 90% of totalsize

Lower Write Amplification

Write amp 1

m RocksDB

InNho

\

m o Target 1GB

a Wr/te Amp 10

\ Wr/te Amp 10

\

]
]
"‘ Wr/te Amp 10

Target 1000 GB

Write Amp = Page size / row size

How About Other Metrics?

e Read QPS
* Write Throughput

Make Read Throughput High:

Reduced Locking in Reads

Memtable: skip list

Data Files: immutable

| SM tree change: thread-local cache of the tree
Synchronize opened files: allow to keep all files open
Block cache mutex: sharded; more optimization coming.

Write Throughput

* Throughput of Compactions
* Throughput of Memtable Inserts

Multi-thread compactions

Compact non-overlapping files

Level 1

Level 2

Level 3

Target: 1 GB
~ Compact

file) Target: 10 GB

L——ﬂ

Target: 100GB

RocksDB Performance On Flash

* Space, Read And Write Amplificaton Trade-offs
* Low Space Amplification

* High Read QPS: Reduced Mutex Locking
* High Write Throughput: Parallel Compaction

Other Storage Media?

RocksDB On Other Storage Media

* Memory-Only:

* Memory Efficiency

* 7 million reads/s in single host benchmark
* Spinning Disk:

* Write-Optimized

* Reasonable Read Performance

Conclusion

* RocksDB is widely used

* RocksDB uses LSM-tree

* RocksDB is highly tunable for flash

* RocksDB can be tuned to be space efficient
* RocksDB has good performance

Thank You!

. http://rocksdb.or

. https://github.com/facebook/rocksdb

. https://www.facebook.com/groups/rocksdb.dev/
. https://eroups.coogle.com/forum/#!forum/rocksdb

5‘ RocksDB

http://rocksdb.org/
https://github.com/facebook/rocksdb
https://www.facebook.com/groups/rocksdb.dev/
https://groups.google.com/forum/#!forum/rocksdb

