
When TiDB Meets Spark
 => TiSpark

��
��
�

mailto:maxiaoyu@pingcap.com

Who am I

● 马晓宇@PingCAP

● Architect@TiDB team

● Working on OLAP related products and features

● Previously lead of Big Data infra team@Netease

● Mainly working on SQL on Hadoop and BigData related stuff

��
��
�

Agenda

● A little bit about TiDB / TiKV

● What is TiSpark

● Architecture

● Features beyond raw Spark

● Use case

● Current Status

��
��
�

What’s TiDB

● Horizontal Scalability

● ACID Transaction

● High Availability

● Auto-Failover

● SQL at scale

● TiKV is its storage engine

What’s Really New with NewSQL?��
��
�

http://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

A little bit about TiDB and TiKV

TiKV TiKV TiKV TiKV

Raft Raft Raft

TiDB TiDB TiDB

...

... ...

Placement
Driver (PD)

Control flow:
Balance / Failover

Metadata / Timestamp request

Stateless SQL Layer

Distributed Storage Layer

gRPC

gRPC

gRPC

��
��
�

What is TiSpark

● TiSpark = Spark SQL on TiKV

○ Spark SQL directly on top of a distributed Database

Storage

● Hybrid Transactional/Analytical Processing(HTAP) rocks

○ Provide strong OLAP capacity together with TiDB

��
��
�

What is TiSpark

● Complex Calculation Pushdown

● Key Range pruning

● Index support

○ Clustering index / Secondary index

○ Covering Index Support

● Cost Based Optimization

○ Histogram

○ Pick up right Access Path

● Batch write (2018 Q2)��
��
�

Spark Exec

Architecture

Spark Exec

Spark Driver

Spark Exec

TiKV TiKV TiKV TiKV

TiSpark

TiSpark TiSpark TiSpark

TiKV

Placement
Driver (PD)

gRPC

Distributed Storage Layer

gRPC

retrieve data location

retrieve real data from TiKV

��
��
�

Architecture

● On Spark Driver
○ Translate metadata from TiDB into Spark meta info
○ Hijack Spark SQL logical plan, pick up elements to be

leverage by storage (TiKV) and rewrite plan
○ Do extra optimization based on extra information

(basically stats, maybe order)
○ Locate Data based on Region info from Placement Driver

and split partitions;
● On Spark Executor

○ Encode Spark SQL plan into TiKV’s coprocessor request
○ Decode TiKV / Coprocessor result and transform result

into Spark SQL Rows��
��
�

How everything made possible

● Two extension points for Spark SQL Internal

● Extra Optimizer Rules allows us to do logical plan transform like Join

Reorder

● Extra Strategies allow us to inject our own physical executor and that’s

what we leveraged for phase 1 in TiSpark

● Kept Spark Internal untouched to avoid compatibility issue��
��
�

How everything made possible
● A fat java client module, paying the price of bypassing TiDB

○ Parsing Schema, Type system, encoding / decoding, coprocessor
○ A full featured TiKV client (without write-support for now)
○ Predicates / Index - Key Range related logic
○ Aggregates pushdown related
○ Limit, Order, Stats related

● A thin layer inside Spark SQL
○ TiStrategy for Spark SQL plan transformation
○ And other utilities for mapping things from Spark SQL to TiKV

client library
○ Thin enough for not bothering much of compatibility with Spark

SQL
● Might be totally port to new DataSource API 2 (hopefully)

○ Spark 2.3’s new API might save us from all possible
incompatibilities��
��
�

Too Abstract? Let’s get concrete
select class, avg(score) from student
WHERE school = ‘engineering’ and lottery(name) = ‘picked’
and studentId >= 8000 and studentId < 10100
 group by class ;

● Above is a table on TiDB named student
● Clustered index on StudentId and a secondary index on

School column
● Lottery is an Spark SQL UDF which pick up a name and

output ‘picked’ if RNG decided so��
��
�

Construct Tasks

Predicates Processing
WHERE school = ‘engineering’ and lottery(name) = ‘picked’
and studentId >= 8000 and studentId < 10100

Region 1
StudentId
[0-5000)

Region 2
StudentId

[5000-10000)

Region 3
StudentId

[10000-15000)

StudentId >= 8000 StudentId < 10100 Key Range: [8000, 10100)

Predicates are converted into key ranges based on indexes

Spark Task 1
Region2

 [8000, 10000)
COP Request

Spark Task 2
Region3

 [10000, 10100)
COP Request

1. Append remaining predicates if supported by
coprocessor

2. Push back whatever needs to be computed by Spark
SQL, e.g. UDFs, prefix index predicates

3. Cut them into tasks according to Region／Range
4. Encode into coprocessor request

gRPC via Spark worker

school = ‘engineering’
School = ‘engineering’

Lottery(name) = ‘picked’

��
��
�

WHERE school = ‘engineering’ and lottery(name) = ‘picked’
and (studentId >= 8000 and studentId < 10100)

Index Scan

TiKV Region Data TiKV Region Data TiKV Region Data

Index Data for student_school Row Data for student

 Executor

[1,5) 5,7,9 10 88Batch Scan for index according
to predicates range

Sort and cut row keys into
ranges according to
Key range in region

● Secondary Index is encode as key-value pair
○ Key is comparable bytes format of

all index keys in defined order
○ Value is the row ID pointing to table

row data

● Reading data via Secondary Index usually
requires a double read.

○ First, read secondary index in range
just like reading primary keys in
previous slide.

○ Shuffle Row IDs according to region
○ Sort all row IDs retrieved and

combine them into ranges if
possible

○ Encoding row IDs into row keys for
the table

○ Send those mini requests in batch
concurrently

● Optimize away second read operation
○ If all required column covered by

index itself already

1,2,3,4,5,7,8,10,88

 Executor

��
��
�

Index Selection
WHERE school = ‘engineering’ and lottery(name) = ‘picked’
and (studentId >= 8000 and studentId < 10100) or studentId in
(10323, 10327)

Histogram

Clustered Index on
StudentID +
predicates related
StudentId matched

Secondary Index on
School +
predicates related
School matched

1k Rows

800 Rows

1K * Clustered Index
Access Cost

<
800 * Secondary
Index Access Cost

● If we the columns referred are all covered by index, then instead of retrieving
actual rows, we apply index only query and cost function will be different

● If histogram not exists, TiSpark using pseudo selection logic.��
��
�

Construct Schema Transformation Rules
TiDB has totally different type system and infer rules

Aggregates Processing
select class, avg(score) from student
…….
 group by class ;

Region 1
StudentId

[5000-10000)

Region 2
StudentId

[5000-10000)

Region 3
StudentId

[10000-15000)

AVG(score) Group BY class

AVG are rewritten into SUM and COUNT

Map Task 1 Map Task 2

gRPC via Spark worker

Spark SQL plan received in TiStrategy

SUM(score) / COUNT(score) Group BY class

Spark Schema by its own type infer rules
[SUM, COUNT, class]

TiKV Schema to Spark Schema
[groupBy keys as bytes, SUM as Decimal, COUNT as BigInt]

Reduce Task 1 Reduce Task 2

● After coprocessor preprocessing,
TiSpark still rely on normal Spark
aggregation strategy

● But if a specific key stays in a single
region, we have a change to optimize
aggregates away (planned)

��
��
�

TiSpark specific storage features

● Different Transaction Isolation Level
○ For OLTP: Snapshot Isolation
○ For OLAP: Read Committed to avoid lock

● Different resource schedule priority
○ Different Resource pool for different workload
○ User can specify different pool for OLAP workload to

isolate resource usage

��
��
�

Features Beyond Raw Spark SQL

● What we have more than traditional SQL-On-Hadoop
systems:
○ Index and global ordering

■ Point query to locate a single record in billions of
rows

■ Flexible secondary Index
○ ACID transaction support

■ query in real time data without T+1 importing from
other data sources

■ Unify OLAP and OLTP in one platform
■ Distributed batch query in a more consistent way��
��
�

Use Case

● Analytical / Transactional support all on one platform
○ No need for ETL
○ Real-time query with Spark
○ Simplify your platform and reduce maintenance cost

● Embrace Spark eco-system
○ Support of complex transformation and analytics

with Spark eco system (far more flexible than stored
procedure)

○ Machine Learning Libraries
○ Spark Streaming��
��
�

Currently In beta, RC towards 1.0

● Open sourced already and currently in beta
● RC1 for now and working towards v1.0
● Most of the important features discussed here done
● Evaluating and working on porting to Spark 2.3 with Data

Source v2 API (if possible to cover all the futures)
● Important upcoming features are

○ Partition Table
○ Authentication

● Plan for GA release before the end of 2018 Q1
● Also, we are working on an slightly independent

columnar OLAP product on top of Spark (again), theFlash��
��
�

Some frequently asked questions
● Why not build on top of TiDB instead of TiKV

○ Full control of details like Range, Data locations and stats which are not

exposed via SQL interface

○ no extra DB layer slowing things down

○ We need a Java client for TiKV as well for other use cases

● Why Spark SQL?

○ Spark SQL is not just SQL, it’s the core of a whole eco-system

● Is UDF supported? Sure

● What Spark version supported?

○ For now it’s built upon Spark 2.1 but will not be too hard to port to other

versions since Spark layer is very relatively thin��
��
�

Thanks!

http://www.example.com

