
Badger: Fast Key-Value DB in Go
Manish R Jain, Dgraph Labs
Apr 14, 2018
Gopher China, Shanghai

Dgraph Labs

Fast, Distributed graph database.

Sparse data sets.

Lots of relationships.

https://dgraph.io

What is Badger?

Badger is an embedded key-value database, written in Go.

Licensed under Apache 2.0.

go get github.com/dgraph-io/badger/...

Current Status

Closing v2.0.

Close to 3500 Github starts.

42 contributors.

Used by Dgraph, Go-IPFS, 0-stor, Sandglass.

Serving 300TB (and growing) at Usenet Express

Basic Operations

Set a key-value

func set() error {
 fmt.Println("\nRunning SET")
 return db.Update(func(txn *badger.Txn) error {
 if err := txn.Set([]byte("foo"), []byte("bar")); err != nil {
 return err
 }
 fmt.Println("Set foo to bar")
 return nil
 })
}

Get a key-value

func get() error {
 fmt.Println("\nRunning GET")
 return db.View(func(txn *badger.Txn) error {
 item, err := txn.Get([]byte("foo")) // handle err
 if err != nil {
 return err
 }
 val, err := item.Value() // handle err
 if err != nil {
 return err
 }
 fmt.Printf("The value is: %s\n", val)
 return nil
 })
}

Iterate key-values

func iterate() error {
 fmt.Println("\nRunning ITERATE")
 return db.View(func(txn *badger.Txn) error {
 opts := badger.DefaultIteratorOptions
 it := txn.NewIterator(opts)
 defer it.Close()

 for it.Rewind(); it.Valid(); it.Next() {
 k := it.Item().Key()
 v, err := it.Item().Value() // handle err
 if err != nil {
 return err
 }
 fmt.Printf("key=%s, value=%s\n", k, v)
 }
 return nil
 })
}

Run the code

func main() {
 opt := badger.DefaultOptions
 opt.Dir = "/tmp/db"
 opt.ValueDir = opt.Dir
 var err error
 db, err = badger.Open(opt)
 if err != nil {
 panic(err)
 }
 defer db.Close()
 fmt.Println("DB opened")
 set()
 get()
 iterate()
 fmt.Println("DB done")
} Run

Badger != replacement for Go map

Motivation and Outcome

Cgo is not Go

Some people, when confronted with a problem, think
“I know, I’ll use cgo.”

Now they have two problems.

->Cgo is not Go, Dave Cheney

RocksDB

Great write throughput.

Okay read throughput.

Cons:

Required Cgo.

BoltDB

Pure Go.

Great read throughput.

Cons:

Bad write throughput.

Why build it?

Go native key-value DB for Dgraph.

No compromise in read-write performance.

Avoid Cgo.

What did we spend?

Spent a few months.

Built with <1 full-time gopher.

Aka, the power of Go!

What did we gain?

A faster key-value DB for Go.

Ability to run Go pro�lers all the way down to disk.

Clean Go code (no C).

Launch Reception

Within 12 hours of blog post release

First page of HN for a day.

355 points, 96 comments.

1250 Github stars in 4 days.

Recruiters loved it!

Got 3 di�erent emails from 3 di�erent recruiters...

Recruiters loved it!

For jobs in the same company.

Design

Two common Trees

LSM trees

B+ trees

LSM Trees

More levels

High write throughput

High read latency

Example: RocksDB

B+ Trees

Fewer levels

Low write throughput

Low read latency

Example: BoltDB

Badger is based on LSM trees.

LSM Trees

Writes in LSM trees: Memtable to L0

Writes in LSM trees: L0 to L1

Writes in LSM trees: Li to Li+1

What makes Badger unique?

Based on WiscKey paper by Uni Wisconsin-Madison.

Separates keys from values.

Stores keys in LSM tree.

Stores value in value log.

Write to Value Log

Write value, get pointer.

More keys per table

Smaller LSM tree

Typical Badger setup

Advantages of smaller LSM tree

Can be kept in RAM.

Low read ampli�cation (fewer lookups).

Low write ampli�cation (fewer compactions).

∝ Number of keys.

Usenet Express

Hundreds of terabytes of data.

Few gigabytes of LSM tree.

Reads in Badger: LSM tree

Reads in Badger: Bloom Filters

Reads in Badger: Value Log

Once key found in LSM tree, read from value log.

Badger is FAST-er

Data Loading: Badger vs Go-RocksDB

As value size increases, Badger's becomes 11.7x faster.

Data Loading: Badger vs BoltDB

11x - 22x faster than BoltDB on all value sizes.

Random Reads: Badger vs Go-RocksDB

Random Get latency is 3.7x - 5.3x lower than RocksDB.

Random Reads: Badger vs BoltDB

Random Get latency is slightly better or worse, depending on value size.

Various other benchmarks

Range iteration latency, etc.

Can be found on https://blog.dgraph.io/

Benchmarking code is open sourced.

github.com/dgraph-io/badger-bench (https://github.com/dgraph-io/badger-bench)

https://github.com/dgraph-io/badger-bench

Features

Concurrent Transactions

Badger uses Oracle to achieve concurrent lock-free transactions.

Concurrent Writes

Batch up writes from multiple transactions.

Amortize cost of disk write.

No wait -> Smart Batching.

Smart Batching in Go

Multi Version Concurrency Control

Badger stores multiple versions of the key.

Provides direct access to the versions, via iterate.

Crash Resilience

LSM Memtables can be lost to crashes.

Can be recovered from value log on restart.

Value Log Garbage Collection

Why?

Value log would keep growing with every Set.

Older versions of keys can be deleted.

Corresponding values can be deleted from value log.

Stage 1: Punch Holes (v2.0 in Linux)

Stage 2: Move entries, Delete log

Dealing with Qu-err-key �le systems.

Would a �le delete reclaim space in the �le
system?

Delete, no reclaim

No

if err := t.fd.Truncate(0); err != nil {
 // This is very important to let the FS know
 // that the file is deleted.
 return err
}

Truncate the �le before deleting.

Would closing a �le sync its contents to disk?

Close, no-sync

No

if err := lf.fd.Sync(); err != nil {
 return errors.Wrapf(err, "Unable to sync value log: %q", lf.path)
}
if err := lf.fd.Close(); err != nil {
 return errors.Wrapf(err, "Unable to close value log: %q", lf.path)
}

Explicitly sync �le before closing.

Can a new synced �le be lost?

Create, no-found

Yes

f, err := os.Open(dir)
if err != nil {
 return errors.Wrapf(err, "While opening directory: %s.", dir)
}
err = f.Sync()
closeErr := f.Close()
if err != nil {
 return errors.Wrapf(err, "While syncing directory: %s.", dir)
}
return errors.Wrapf(closeErr, "While closing directory: %s.", dir)

Sync a directory just like you would sync a �le.

Can a crash add garbage data to end of �le?

Crash, no-clean

Yes.

Add checksums to know when to truncate a �le.

Who should use Badger?

Don't use Badger if...

You no Go! (C++, Java)

You have a single-threaded sequential workload.

You have a small, read-only workload.

All your data can �t in memory easily.

Use Badger if...

You Go!

You want to avoid Cgo.

You want a performant read-write workload.

You access data concurrently (many goroutines accessing data).

You need 3-dimensional access.

Future Work

Encryption at rest.

Others? (tell us what you need)

Work on Badger and Dgraph. Come join us!

github.com/dgraph-io/badger (https://github.com/dgraph-io/badger)

github.com/dgraph-io/dgraph (https://github.com/dgraph-io/dgraph)

Careers at Dgraph (https://dgraph.io/about.html)

https://github.com/dgraph-io/badger
https://github.com/dgraph-io/dgraph
https://dgraph.io/about.html

Talk to us on Wechat

Thank you

Manish R Jain, Dgraph Labs
Apr 14, 2018
Gopher China, Shanghai
manish@dgraph.io (mailto:manish@dgraph.io)

@manishrjain (http://twitter.com/manishrjain)

mailto:manish@dgraph.io
http://twitter.com/manishrjain

