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Ceph storage interfaces, a familiar sight...
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Our research: programmability in storage
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The agenda
● Why should I care about logs?
● How to build a really, really fast log
● Mapping techniques for fast logs onto Ceph
● A few usage examples
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Why you should care about logs
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A log is an ordered list of data elements
● General abstract form of a log
● Ordered list of elements
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A log is an ordered list of data elements
● General abstract form of a log
● Ordered list of elements
● New entries are appended to the log
● Log entries can be read directly
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Everyone is going bananas for logs
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● Very high throughput logs
● No global ordering

● Strongly consistent, global ordering
● Write batching
● Single writer

Apache 
BookKeeper



Strongly consistent shared-log
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Strongly consistent, high-performance shared-log
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Shared-logs are challenging to scale

Balakrishnan et al., “Tango: Distributed Data Structures over a Shared Log”, SOSP ‘13
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CORFU: A Shared Log Design for Flash Clusters
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Balakrishnan, et. al, NSDI 2011



CORFU decouples I/O from ordering
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CORFU stripes log across a cluster of flash devices
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You might be thinking...
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std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer

read append Decouple append I/O from 
assignment of ordering● It can’t possibly be this simple....
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You might be thinking...

clients
1, 2, 3, 4, 5, ….

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer

read append Decouple append I/O from 
assignment of ordering● It can’t possibly be this simple.... you’d be correct

● Isn’t this supposed to be a Ceph talk?
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The CORFU I/O path
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CORFU uses a cluster map and striping function
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CORFU replicates log entries across the cluster
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The CORFU protocol relies on custom I/O interface
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A dedicated CORFU cluster is expensive...
● Duplicated services

○ Fault-tolerance
○ Metadata management

● Dedicated / over-provisioned hardware
○ You need a full cluster of flash devices!

● Custom storage interfaces
○ Hardware or software

● Already have a Ceph cluster?
○ Too bad

● Can we use software-defined storage?
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Mapping the components of CORFU onto Ceph
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A cluster of OSDs rather than raw storage devices
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Ceph handles fault-tolerance transparently
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Log distribution becomes object naming issue
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Storage interface built using RADOS object classes
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ZLog is an implementation of CORFU on Ceph

osd osd osd
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ZLog is an implementation of CORFU on Ceph
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The ZLog project is open-source on Github
● https://github.com/cruzdb/zlog
● Development backend (LMDB)
● Tools to build Ceph plugin
● High and low-level APIs
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// build a backend instance

auto backend = std::unique_ptr<zlog::Backend>(

  new zlog::storage::ceph::CephBackend(ioctx));

// open the log

zlog::Log log;

int ret = zlog::Log::CreateWithBackend(std::move(backend),

  "mylog", &log);

// append to the log

uint64_t pos;

log.Append(Slice(“foo”), &pos);

https://github.com/cruzdb/zlog
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Building applications on RADOS using 
object classes
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Design decisions for the ZLog I/O path
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Design decisions for the ZLog I/O path
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The CORFU storage interface
● write(obj, position, data)
● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)
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The CORFU storage interface
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The CORFU storage interface
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch
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○ Atomic update
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librados won’t [currently] cut it for this job
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch
○ Position must not fall within a GC’d range
○ Optionally update maximum position observed
○ Atomic update

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)
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CORFU write interface as an object class
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RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy

int write(context_t hctx, bufferlist *in, bufferlist *out) {
 // ensure up-to-date client
 if (epoch_guard(header, op.epoch(), false)) {
   return -ESPIPE;
 }

 // read entry based on request position
 ceph::bufferlist bl;
 int ret = cls_cxx_map_get_val(hctx, key, &bl);
 if (ret < 0)
   return ret;
 if (entry && !decode(bl, entry))
   return -EIO;
 return 0;

 // write entry if position is not taken
 if (ret == -ENOENT) {
   entry_write_entry(hctx, key, entry);

   if (!header.has_max_pos() || (op.pos() > header.max_pos()))
     header.set_max_pos(op.pos());

   ret = entry_write_header(hctx, header);
 } else {
  // handle errors associated with write-once semantics
 }
}



CORFU write interface as an object class
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Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples
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Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

2. Build and load the plugin into Ceph
3. Old way to manage plugins

a. Manage your own Ceph fork

4. New way to manage plugins with SDK (credit: Neha Ojha @ b7215b0)
a. dnf install rados-objclass-devel
b. #include <rados/objclass.h>
c. compile cls_hello.cc as object library
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Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

2. Build and load the plugin into Ceph
3. Old way to manage plugins

a. Manage your own Ceph fork

4. New way to manage plugins with SDK (credit: Neha Ojha @ b7215b0)
a. dnf install rados-objclass-devel
b. #include <rados/objclass.h>
c. compile cls_hello.cc as object library

5. Distribute your plugin to OSDs at <libdir>/rados-classes/cls_hello.so
6. Starting making requests ioctx::exec(“hello”, …)
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The CORFU seal(obj, epoch) interface is tougher
● Semantics are do the following atomically

○ Verify and update the stored epoch
○ Return the largest position written

● RADOS object classes don’t support this mix of ops
○ Currently

● Solution
○ Split the operation
○ Verify

● Luckily this isn’t a fast path
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How we have been using ZLog
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PostgreSQL logical replication with ZLog
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CruzDB is an immutable key-value store on ZLog
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CruzDB is an immutable key-value store on ZLog
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CruzDB is an immutable key-value store on ZLog
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CruzDB is an immutable key-value store on ZLog
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Wrapping up
● We use Ceph as a prototyping system

○ Application-specific interfaces

● There is a broad range of interests in log-oriented interfaces
● We’ve built a Ceph-based implementation of a high-performance log

○ ZLog @ https://github.com/cruzdb/zlog

● Using it for several real-world use cases
○ PostgreSQL logical replication (https://github.com/cruzdb/pg_zlog)
○ CruzDB immutable database (https://github.com/cruzdb/cruzdb)
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Thank you and questions
● Noah Watkins (@noahdesu)
● Learning resources

○ Object class SDK documentation
■ http://docs.ceph.com/docs/master/rados/api/objclass-sdk/

○ ZLog is the only user of the SDK I’m aware of
■ https://github.com/cruzdb/zlog/blob/master/src/storage/ceph/cls_zlog.cc

○ The Ceph tree contains a ton of object classes for reference
■ https://github.com/ceph/ceph/tree/master/src/cls

○ Writing object classes using Lua
■ https://ceph.com/geen-categorie/dynamic-object-interfaces-with-lua/
■ https://nwat.xyz/blog/2018/03/13/video-of-my-talk-at-lua-workshop-2017/
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