
Experiences building a distributed
shared-log on RADOS

Noah Watkins
UC Santa Cruz

@noahdesu

2

● Graduate student
● UC Santa Cruz

● Data management,
file systems, HPC,
QoS

● Ceph as a
prototyping
platform

About me
● Graduate student
● UC Santa Cruz

3

● Graduate student
● UC Santa Cruz

● Data management,
file systems, HPC,
QoS

● Ceph as a
prototyping
platform

About me
● Graduate student
● UC Santa Cruz

● Data management
● Storage systems
● High-performance computing
● Quality of service

4

● Graduate student
● UC Santa Cruz

● Data management,
file systems, HPC,
QoS

● Ceph as a
prototyping
platform

About me
● Graduate student
● UC Santa Cruz

● Data management
● Storage systems
● High-performance computing
● Quality of service
● Ceph shop for prototyping

Ceph storage interfaces, a familiar sight...

5

RADOS

LIBRADOS RADOSGW RBD CEPHFS

Our research: programmability in storage

6

RADOS

LIBRADOS RADOSGW RBD CEPHFSMatrix Log

Our research: programmability in storage

7

RADOS

LIBRADOS RADOSGW RBD CEPHFSMatrix Log

The agenda
● Why should I care about logs?
● How to build a really, really fast log
● Mapping techniques for fast logs onto Ceph
● A few usage examples

8

Why you should care about logs

9

A log is an ordered list of data elements
● General abstract form of a log
● Ordered list of elements

10

0 1 2 3 4 5 6 7 8 9 10 11 12

A log is an ordered list of data elements
● General abstract form of a log
● Ordered list of elements
● New entries are appended to the log

11

0 1 2 3 4 5 6 7 8 9 10 11 12

clients
append

A log is an ordered list of data elements
● General abstract form of a log
● Ordered list of elements
● New entries are appended to the log
● Log entries can be read directly

12

0 1 2 3 4 5 6 7 8 9 10 11 12

clients
append

Everyone is going bananas for logs

13

● Very high throughput logs
● No global ordering

● Strongly consistent, global ordering
● Write batching
● Single writer

Apache
BookKeeper

Strongly consistent shared-log

14

0 1 2 3 4 5 6 7 8 9 10 11 12

Database management systems Replicated state machines Cloud-based metadata services

Strongly consistent, high-performance shared-log

15

0 1 2 3 4 5 6 7 8 9 10 11 12

Database management systems Replicated state machines Cloud-based metadata services

Shared-logs are challenging to scale

Balakrishnan et al., “Tango: Distributed Data Structures over a Shared Log”, SOSP ‘13

16

Shared-logs are challenging to scale

Balakrishnan et al., “Tango: Distributed Data Structures over a Shared Log”, SOSP ‘13

17

Shared-logs are challenging to scale

clients
0 1

2

Paxos
append

18

0 1 2 3 4 5 6 7 8 9 10 11 12

Shared-logs are challenging to scale

clients
0 1

2

Paxos
append

Writes are
funneled through
a total ordering
engine

19

0 1 2 3 4 5 6 7 8 9 10 11 12

Shared-logs are challenging to scale

clients
0 1

2

Paxos
append

Writes are
funneled through
a total ordering
engine

20

0 1 2 3 4 5 6 7 8 9 10 11 12

Parallel reads
supported when
log is distributed

Random read
workloads perform
poorly on HDDs

CORFU: A Shared Log Design for Flash Clusters

21

Balakrishnan, et. al, NSDI 2011

CORFU decouples I/O from ordering

22

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer

reads

CORFU decouples I/O from ordering

23

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer
100K-1M pos/sec

reads

CORFU decouples I/O from ordering

24

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer
100K-1M pos/sec

parallel appendreads

CORFU stripes log across a cluster of flash devices

25

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer
100K-1M pos/sec

parallel appendreads

You might be thinking...

clients
1, 2, 3, 4, 5, ….

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer

read append Decouple append I/O from
assignment of ordering● It can’t possibly be this simple....

26

100K-1M pos/sec

You might be thinking...

clients
1, 2, 3, 4, 5, ….

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer

read append Decouple append I/O from
assignment of ordering● It can’t possibly be this simple.... you’d be correct

27

100K-1M pos/sec

You might be thinking...

clients
1, 2, 3, 4, 5, ….

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer

read append Decouple append I/O from
assignment of ordering● It can’t possibly be this simple.... you’d be correct

● Isn’t this supposed to be a Ceph talk?

28

100K-1M pos/sec

The CORFU I/O path
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

29

Cluster of flash devices

Append() ??

CORFU uses a cluster map and striping function
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

30

Cluster of flash devices

Append()

Striping and
Addressing

CORFU replicates log entries across the cluster
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

31

Cluster of flash devices

Append() Striping and
Addressing

Fault tolerance

Replication

The CORFU protocol relies on custom I/O interface
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

32

Cluster of flash devices

Append() Striping and
Addressing

Fault tolerance

Custom
hardware
interface

Replication

A dedicated CORFU cluster is expensive...
● Duplicated services

○ Fault-tolerance
○ Metadata management

● Dedicated / over-provisioned hardware
○ You need a full cluster of flash devices!

● Custom storage interfaces
○ Hardware or software

● Already have a Ceph cluster?
○ Too bad

● Can we use software-defined storage?

33

Mapping the components of CORFU onto Ceph
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

34

Cluster of flash devices

Append() Striping and
Addressing

Fault tolerance

Custom
hardware
interface

Replication

A cluster of OSDs rather than raw storage devices
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

35

Cluster of OSDs

Append() Striping and
Addressing

Fault tolerance

Custom
hardware
interface

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

Ceph handles fault-tolerance transparently
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

36

Cluster of OSDs

Append() Striping and
Addressing

Fault tolerance

Custom
hardware
interface

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

Replication

Log distribution becomes object naming issue
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

37

Append() Striping and
Addressing

Object naming

Custom
hardware
interface

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

Replication

Cluster of OSDs

Storage interface built using RADOS object classes
Lo

g
In

te
rfa

ce
 (e

.g
. A

pp
en

d)

38

Append() Striping and
Addressing

Object naming

RADOS
object
class

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

OSD OSD OSD

Replication

Cluster of OSDs

ZLog is an implementation of CORFU on Ceph

osd osd osd

39

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer 100K-1M pos/sec

parallel appendreads

BlueStore RocksDBLMDB

ZLog is an implementation of CORFU on Ceph

osd osd osd

40

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer 100K-1M pos/sec

parallel appendreads

BlueStore RocksDBLMDB

Transparent
changes to
hardware,
software, tuning

ZLog is an implementation of CORFU on Ceph

osd osd osd

41

clients
1, 2, 3, 4...

0 1 2 3 4 5 6 7 8 9 10 11 12

RPC: Tail, Next

std::atomic<u64> seq;
tail = seq;
next = seq++;

Sequencer 100K-1M pos/sec

parallel appendreads

BlueStore RocksDBLMDB

Transparent
changes to
hardware,
software, tuning

Integration with
features like
tiering, erasure
coding, and I/O
hinting

The ZLog project is open-source on Github
● https://github.com/cruzdb/zlog
● Development backend (LMDB)
● Tools to build Ceph plugin
● High and low-level APIs

42

// build a backend instance

auto backend = std::unique_ptr<zlog::Backend>(

 new zlog::storage::ceph::CephBackend(ioctx));

// open the log

zlog::Log log;

int ret = zlog::Log::CreateWithBackend(std::move(backend),

 "mylog", &log);

// append to the log

uint64_t pos;

log.Append(Slice(“foo”), &pos);

https://github.com/cruzdb/zlog

The ZLog project is open-source on Github
● https://github.com/cruzdb/zlog
● Development backend (LMDB)
● Tools to build Ceph plugin
● High and low-level APIs

43

// build a backend instance

auto backend = std::unique_ptr<zlog::Backend>(

 new zlog::storage::ceph::CephBackend(ioctx));

// open the log

zlog::Log log;

int ret = zlog::Log::CreateWithBackend(std::move(backend),

 "mylog", &log);

// append to the log

uint64_t pos;

log.Append(Slice(“foo”), &pos);

https://github.com/cruzdb/zlog

The ZLog project is open-source on Github
● https://github.com/cruzdb/zlog
● Development backend (LMDB)
● Tools to build Ceph plugin
● High and low-level APIs

44

// build a backend instance

auto backend = std::unique_ptr<zlog::Backend>(

 new zlog::storage::ceph::CephBackend(ioctx));

// open the log

zlog::Log log;

int ret = zlog::Log::CreateWithBackend(std::move(backend),

 "mylog", &log);

// append to the log

uint64_t pos;

log.Append(Slice(“foo”), &pos);

https://github.com/cruzdb/zlog

The ZLog project is open-source on Github
● https://github.com/cruzdb/zlog
● Development backend (LMDB)
● Tools to build Ceph plugin
● High and low-level APIs

45

// build a backend instance

auto backend = std::unique_ptr<zlog::Backend>(

 new zlog::storage::ceph::CephBackend(ioctx));

// open the log

zlog::Log log;

int ret = zlog::Log::CreateWithBackend(std::move(backend),

 "mylog", &log);

// append to the log

uint64_t pos;

log.Append(Slice(“foo”), &pos);

https://github.com/cruzdb/zlog

Building applications on RADOS using
object classes

46

Design decisions for the ZLog I/O path

47

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy

Design decisions for the ZLog I/O path

48

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object

Design decisions for the ZLog I/O path

49

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object
● Stripe log across objects

Design decisions for the ZLog I/O path

50

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object
● Stripe log across objects
● … but not too many objects

Design decisions for the ZLog I/O path

51

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object
● Stripe log across objects
● … but not too many objects

● Changes to striping policy

Design decisions for the ZLog I/O path

52

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object
● Stripe log across objects
● … but not too many objects

● Changes to striping policy
● Coordinated metadata update

Design decisions for the ZLog I/O path

53

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object
● Stripe log across objects
● … but not too many objects

● Changes to striping policy
● Coordinated metadata update
● Treat an object like a

consensus API

Design decisions for the ZLog I/O path

54

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy
● Log entry → Object
● Stripe log across objects
● … but not too many objects

● Changes to striping policy
● Coordinated metadata update
● Treat an object like a

consensus API

The CORFU storage interface
● write(obj, position, data)
● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

55

The CORFU storage interface
● write(obj, position, data)
● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

56

The CORFU storage interface
● write(obj, position, data)

○ Write-once: position must be open

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

57

The CORFU storage interface
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

58

The CORFU storage interface
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch
○ Position must not fall within a GC’d range

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

59

The CORFU storage interface
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch
○ Position must not fall within a GC’d range
○ Optionally update maximum position observed

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

60

The CORFU storage interface
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch
○ Position must not fall within a GC’d range
○ Optionally update maximum position observed
○ Atomic update

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

61

librados won’t [currently] cut it for this job
● write(obj, position, data)

○ Write-once: position must be open
○ Request must be tagged with up-to-date epoch
○ Position must not fall within a GC’d range
○ Optionally update maximum position observed
○ Atomic update

● read(obj, position)
● invalidate(obj, position)
● trim(obj, position)

○ Mark for GC

● seal(obj, epoch)

62

CORFU write interface as an object class

63

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy

int write(context_t hctx, bufferlist *in, bufferlist *out) {
 // ensure up-to-date client
 if (epoch_guard(header, op.epoch(), false)) {
 return -ESPIPE;
 }

 // read entry based on request position
 ceph::bufferlist bl;
 int ret = cls_cxx_map_get_val(hctx, key, &bl);
 if (ret < 0)
 return ret;
 if (entry && !decode(bl, entry))
 return -EIO;
 return 0;

 // write entry if position is not taken
 if (ret == -ENOENT) {
 entry_write_entry(hctx, key, entry);

 if (!header.has_max_pos() || (op.pos() > header.max_pos()))
 header.set_max_pos(op.pos());

 ret = entry_write_header(hctx, header);
 } else {
 // handle errors associated with write-once semantics
 }
}

CORFU write interface as an object class

64

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy

int write(context_t hctx, bufferlist *in, bufferlist *out) {
 // ensure up-to-date client
 if (epoch_guard(header, op.epoch(), false)) {
 return -ESPIPE;
 }

 // read entry based on request position
 ceph::bufferlist bl;
 int ret = cls_cxx_map_get_val(hctx, key, &bl);
 if (ret < 0)
 return ret;
 if (entry && !decode(bl, entry))
 return -EIO;
 return 0;

 // write entry if position is not taken
 if (ret == -ENOENT) {
 entry_write_entry(hctx, key, entry);

 if (!header.has_max_pos() || (op.pos() > header.max_pos()))
 header.set_max_pos(op.pos());

 ret = entry_write_header(hctx, header);
 } else {
 // handle errors associated with write-once semantics
 }
}

connection to client

CORFU write interface as an object class

65

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy

int write(context_t hctx, bufferlist *in, bufferlist *out) {
 // ensure up-to-date client
 if (epoch_guard(header, op.epoch(), false)) {
 return -ESPIPE;
 }

 // read entry based on request position
 ceph::bufferlist bl;
 int ret = cls_cxx_map_get_val(hctx, key, &bl);
 if (ret < 0)
 return ret;
 if (entry && !decode(bl, entry))
 return -EIO;
 return 0;

 // write entry if position is not taken
 if (ret == -ENOENT) {
 entry_write_entry(hctx, key, entry);

 if (!header.has_max_pos() || (op.pos() > header.max_pos()))
 header.set_max_pos(op.pos());

 ret = entry_write_header(hctx, header);
 } else {
 // handle errors associated with write-once semantics
 }
}

connection to client

CORFU write interface as an object class

66

RADOS object classes

CORFU storage interface

OSD

librados

ZLog client library

Striping policy

int write(context_t hctx, bufferlist *in, bufferlist *out) {
 // ensure up-to-date client
 if (epoch_guard(header, op.epoch(), false)) {
 return -ESPIPE;
 }

 // read entry based on request position
 ceph::bufferlist bl;
 int ret = cls_cxx_map_get_val(hctx, key, &bl);
 if (ret < 0)
 return ret;
 if (entry && !decode(bl, entry))
 return -EIO;
 return 0;

 // write entry if position is not taken
 if (ret == -ENOENT) {
 entry_write_entry(hctx, key, entry);

 if (!header.has_max_pos() || (op.pos() > header.max_pos()))
 header.set_max_pos(op.pos());

 ret = entry_write_header(hctx, header);
 } else {
 // handle errors associated with write-once semantics
 }
}

connection to client

Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

67

Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

2. Build and load the plugin into Ceph

68

Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

2. Build and load the plugin into Ceph
3. Old way to manage plugins

a. Manage your own Ceph fork

69

Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

2. Build and load the plugin into Ceph
3. Old way to manage plugins

a. Manage your own Ceph fork

4. New way to manage plugins with SDK (credit: Neha Ojha @ b7215b0)
a. dnf install rados-objclass-devel
b. #include <rados/objclass.h>
c. compile cls_hello.cc as object library

70

https://github.com/ceph/ceph/commit/b7215b025aef045088f7d24b613b6f8ca940da7a

Getting started with object classes
1. The hello world object class (in Ceph: src/cls/hello/cls_hello.cc)

a. Super well documented, easy examples

2. Build and load the plugin into Ceph
3. Old way to manage plugins

a. Manage your own Ceph fork

4. New way to manage plugins with SDK (credit: Neha Ojha @ b7215b0)
a. dnf install rados-objclass-devel
b. #include <rados/objclass.h>
c. compile cls_hello.cc as object library

5. Distribute your plugin to OSDs at <libdir>/rados-classes/cls_hello.so
6. Starting making requests ioctx::exec(“hello”, …)

71

https://github.com/ceph/ceph/commit/b7215b025aef045088f7d24b613b6f8ca940da7a

The CORFU seal(obj, epoch) interface is tougher
● Semantics are do the following atomically

○ Verify and update the stored epoch
○ Return the largest position written

● RADOS object classes don’t support this mix of ops
○ Currently

● Solution
○ Split the operation
○ Verify

● Luckily this isn’t a fast path

72

How we have been using ZLog

73

PostgreSQL logical replication with ZLog

74

0 1 2 3 4 5 6 7 8 9 10 11 12

osd osd osd

INSERT UPDATE DELETE
R

ep
la

y

R
ep

la
y

R
ep

la
y

R
ep

la
y

R
ep

la
y

C C C C
Queries

ZLog

https://github.com/cruzdb/pg_zlog

https://github.com/cruzdb/pg_zlog

CruzDB is an immutable key-value store on ZLog

75

0 1 2 3 4 5 6 7 8 9 10 11 12

osd osd osd

GET PUT DELETE
R

ep
la

y

R
ep

la
y

R
ep

la
y

R
ep

la
y

R
ep

la
y

C C C C
Key/Value Transactions

ZLog

https://github.com/cruzdb/cruzdb

https://github.com/cruzdb/cruzdb

CruzDB is an immutable key-value store on ZLog

76

0 1 2 3 4 5 6 7 8 9 10 11 12

osd osd osd

GET PUT DELETE
R

ep
la

y

R
ep

la
y

R
ep

la
y

R
ep

la
y

R
ep

la
y

C C C C
Key/Value Transactions

ZLog

Database is a
copy-on-write
red-black tree

https://github.com/cruzdb/cruzdb

https://github.com/cruzdb/cruzdb

CruzDB is an immutable key-value store on ZLog

77

0 1 2 3 4 5 6 7 8 9 10 11 12

osd osd osd

GET PUT DELETE
R

ep
la

y

R
ep

la
y

R
ep

la
y

R
ep

la
y

R
ep

la
y

C C C C
Key/Value Transactions

ZLog

Database is a
copy-on-write
red-black tree

Efficient read-only
snapshots

https://github.com/cruzdb/cruzdb

https://github.com/cruzdb/cruzdb

CruzDB is an immutable key-value store on ZLog

78

0 1 2 3 4 5 6 7 8 9 10 11 12

osd osd osd

GET PUT DELETE
R

ep
la

y

R
ep

la
y

R
ep

la
y

R
ep

la
y

R
ep

la
y

C C C C
Key/Value Transactions

ZLog

Database is a
copy-on-write
red-black tree

Efficient read-only
snapshotsTime travel

capabilities

https://github.com/cruzdb/cruzdb

https://github.com/cruzdb/cruzdb

Wrapping up
● We use Ceph as a prototyping system

○ Application-specific interfaces

● There is a broad range of interests in log-oriented interfaces
● We’ve built a Ceph-based implementation of a high-performance log

○ ZLog @ https://github.com/cruzdb/zlog

● Using it for several real-world use cases
○ PostgreSQL logical replication (https://github.com/cruzdb/pg_zlog)
○ CruzDB immutable database (https://github.com/cruzdb/cruzdb)

79

https://github.com/cruzdb/zlog
https://github.com/cruzdb/pg_zlog
https://github.com/cruzdb/cruzdb

Thank you and questions
● Noah Watkins (@noahdesu)
● Learning resources

○ Object class SDK documentation
■ http://docs.ceph.com/docs/master/rados/api/objclass-sdk/

○ ZLog is the only user of the SDK I’m aware of
■ https://github.com/cruzdb/zlog/blob/master/src/storage/ceph/cls_zlog.cc

○ The Ceph tree contains a ton of object classes for reference
■ https://github.com/ceph/ceph/tree/master/src/cls

○ Writing object classes using Lua
■ https://ceph.com/geen-categorie/dynamic-object-interfaces-with-lua/
■ https://nwat.xyz/blog/2018/03/13/video-of-my-talk-at-lua-workshop-2017/

80

http://docs.ceph.com/docs/master/rados/api/objclass-sdk/
https://github.com/cruzdb/zlog/blob/master/src/storage/ceph/cls_zlog.cc
https://github.com/ceph/ceph/tree/master/src/cls
https://ceph.com/geen-categorie/dynamic-object-interfaces-with-lua/
https://nwat.xyz/blog/2018/03/13/video-of-my-talk-at-lua-workshop-2017/

