
Hyperscan INTRODUCTION
NPG PAE: Jerry Zhang
jerry.zhang@intel.com

Network Platforms Group 2

Legal Disclaimer
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to
grant
Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata
are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by
visiting: http://www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
http://www.intel.com/ or from the OEM or retailer.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any
differences in your system hardware, software or configuration may affect your actual performance.
No computer system can be absolutely secure.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

Intel, Intel logo, Intel Core, Intel Inside, Intel Inside logo, Intel Itanium, Xeon, Atom, Intel ME, Intel VT-X, Intel VT-d, Intel Advanced Vector Extensions (Intel AVX), Intel AVX2,
Intel AVX-512, Intel Turbo Boost Technology, Intel QuickAssist Technology, Intel Data Direct I/O Technology (Intel DDIO), Intel OP Fabric, Intel NetBurst, Intel HT
Technology, Intel Volume Management Device (Intel VMD), Intel Ultra Path Interconnect (Intel UPI), Intel Speed Shift Technology, Intel Intelligent Systems Alliance (Intel ISA),
Intel QuickData Technology, and Intel Platform Trust Technology (Intel PTT) are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2016, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/
http://www.intel.com/benchmarks

Network Platforms Group 3

“Some people, when confronted
with a problem, think ‘I know, I'll
use regular expressions.’ Now
they have two problems.”
– Jamie Zawinski, 1997 (Old thinking about regular expressions?)

3

Network Platforms Group 4

A few samples just so we know what we're talking about

• /abc.*def/s – “abc followed by def”

• /\s+/s – “one or more white space characters”

• /foo[^\n]{400,600}bar/s – “foo followed by 400 to 600
characters that aren’t a newline, followed by bar”

• /[^a]...[^e]...[^i]...[^o]...[^u]/s – “something that isn’t a
‘a’, followed by three characters, followed by
something that isn’t a ‘e’, followed by three characters,
followed by something that isn’t a ‘i’, etc.

The libpcre library is our standard; we use this for a
semantic basis for fuzzing in automated testing

Regular Expressions

1

Network Platforms Group 5

Software Pattern Matching library
• Regex and fixed-string matching
• High performance, portable and easy to

integrate
• Low scan latency (good small packet

performance)
• Low overhead: pattern compile time,

bytecode size and stream state size

Scales on Intel® processor family from
Atom to Xeon
• Uses Intel SIMD instructions (from SSE2 to

AVX 512) for high performance

Adopted in leading IPS/IDS engines
• Open source integrations available for

Suricata, Snort (and Snort++) and DSPAM

Wide application
• Network Security and infrastructure
• Virtualized environments (Cloud, SDN/NFV)

Content Inspection Performance
for:
• Firewalls, IPS/IDS
• DPI, Anti-X
• Content Filtering
• Any application using Regex

patterns

Physical and NFV Platforms

5

Hyperscan

Network Platforms Group 6

Feature Rich
• Cross-compilation (cross-compile

across architectures)

• Block mode scanning

• Streaming mode (allows matching
across multiple ‘data’ writes to a
stream)

• Start/End of Match, Ordering

• Vectoring (multiple block data writes,
all present at the same time, different
memory locations)

Robust, expressive feature
• Use a wide range of regex constructs

• No ‘combinational explosion’, no
backtracking

• Use large numbers of constructs
such as .* or or [^>]* without any
problems

Hyperscan

Network Platforms Group 7

• Streaming operation means scan can work “as if” all data
was present even on a stream of sequential writes

• Can’t hold on to old data! Old stream writes are gone

• Streaming requires only a small, fixed amount of stream
state (can throw away old writes)

• Streaming works without compromise (no fixed size
windows, no limited number of writes)

• Identical semantics regardless of stream write grouping –
all three sequences below are the same in terms of
expected matches:

Streaming

xxxabcxxxxxxxxdefxx

xxxab xdefxxcxxxxxxx

x x x a b c x x x x x x x d e f x x

Time (earlier writes to
later writes)

Network Platforms Group 8

1

Hyperscan Operation: Compiler
• Take an input set of

patterns

• Compile to a ‘bytecode’
(optimizing as we go)

• Compiler:

• C++ implementation (C
API)

• Dynamic memory
allocations

• Unpredictable compile
times

• “Bad news in advance”:
Unsupported patterns,
large bytecode, large
stream state

Array of patterns, IDs, flags

Regex #1
/foo.*bar/s

Regex #2
/[a-f]{6,12}/i

Regex #3
/^GET\s.*HTTP/m

Hyperscan compiler
hs_compile_multi

Database Bytecode
hs_database_t

Mode Flags
(streaming/block,

platform, …)

Network Platforms Group 9

Compiler API

expressions, flags and ids are all arrays of length elements, each element
describing a pattern.

mode contains database-global flags: block mode, streaming mode,
platform information.

Errors result in a return value other than HS_SUCCESS and a more
detailed message in the hs_compile_error_t structure.

CPU

hs_error_t

hs_compile_multi(const char * const *expressions,

const unsigned int *flags,const unsigned int *ids,

unsigned int elements, unsigned int mode,

const hs_platform_info_t *platform,

hs_database_t **db,

hs_compile_error_t **error);

Network Platforms Group 10

Compiler API Pattern Flags(1)

HS_FLAG_CASELESS: case-insensitively match alphabetic
characters

HS_FLAG_DOTALL: interpret '.' as matching any character,
rather than any character except newline

HS_FLAG_MULTILINE: interpret '^' and '$' as matching at
newline characters as well as at start and end of data

HS_FLAG_SINGLEMATCH: produce at most one match
from this pattern

HS_FLAG_UTF-8: operate in UTF-8 mode

HS_FLAG_UCP: interpret character classes with UCP
properties

CPU

Network Platforms Group 11

Compiler API Pattern Flags(2)

HS_FLAG_ERROREOD: raise an error at compile-time
if the expression can match at end-of-data (e.g.
/foobar$/)

HS_FLAG_ALLOWEMPTY: allow expressions that can
match against empty buffers (e.g. /.*/)

HS_FLAG_ORDERED: guarantee that matches from
this pattern will be returned in order

HS_FLAG_SOM_LEFTMOST: report leftmost start of
match

HS_FLAG_PREFILTER : Compile pattern in
prefiltering mode.

CPU

Network Platforms Group 12

Compiler API Mode Flags and Platform

Mode: HS_MODE BLOCK, HS_MODE_STREAM,
HS_MODE_VECTORED

Platform: If not NULL, the platform structure is
used to determine the target platform. If NULL, a
database suitable for running on the current host
platform CPU

Network Platforms Group 13

13

Hyperscan Operation: Run-time

• Run-time
components:

• Scratch space
(working memory) –
read/write

• Compiled bytecode
– read only

• Input data

• Matches returned via
callback

• Only predictable
memory allocations
(nothing dynamic)

• Runtime in C only

Database Bytecode
hs_database_t

HyperScan Runtime
Block Mode Scan

hs_scan

Data Block
const char * data

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Allocate Scratch
hs_alloc_scratch

Scratch Space
hs_scratch_t

Network Platforms Group 14

Block Mode API

Simplest scanning mode: scans length bytes of data against the database
db.

Matches result in the function onEvent being called, with the context
pointer ctx.

Returns HS_SUCCESS on success

HS_SCAN_TERMINATED if the user callback requested termination

Other errors for invalid arguments

CPU

hs_error_t hs_scan(const hs_database_t *db, const char *data,

unsigned int length, unsigned int flags, hs_scratch_t *scratch,

match_event_handler onEvent, void *ctx);

Network Platforms Group 15

15

Hyperscan Operation: Run-time
(streaming)

• As per block mode,
but we must
maintain stream
state

• Open, write, close
operations

• Also various
shortcuts (reset a
stream)

Database Bytecode
hs_database_t

Open Stream
hs_open_stream

Stream State
hs_stream_t

Data Block 1
const char *

Data Block 2
const char *

Data Block 3
const char *

HyperScan Runtime
Streaming Mode Scan
hs_scan_stream

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Match Callback
match for ID n at

offset i

Blocks passed in order
to hs_scan_stream

Passed to hs_scan_stream
for each data block

Close Stream
hs_close_stream

Can produce matches at end-of-data
from end-anchored patterns

Allocate Scratch
hs_alloc_scratch

Scratch Space
hs_scratch_t

Network Platforms Group 16

Stream Mode API

Persistent state is stored in an hs_stream_t allocated/freed by the
open and close calls.

True streaming, not a rescanning approach: matches can span any
distance

The amount of stream state is fixed and is dependent on the structure
of the patterns.

hs_close_stream produces matches for EOD-anchored patterns, like
/foobar$/

CPU

hs_error_t hs_open_stream(const hs_database_t *db,

match_event_handler onEvent,

unsigned int flags, void *ctx, hs_stream_t **stream);

hs_error_t hs_close_stream(hs_stream_t *id, hs_scratch_t *scratch);

hs_error_t hs_scan_stream(hs_stream_t *id, const char *data,

unsigned int length, unsigned int flags, hs_scratch_t *scratch);

Network Platforms Group 17

Scratch Space API

Runtime operations that scan data need a scratch region, used to store

temporary data.

This can be called multiple times with several databases, which will result

in a scratch region that can be used with any of them.

Every thread of control needs its own scratch, though they can share a

(read-only) database.

CPU

hs_error_t hs_alloc_scratch(const hs_database_t *db,

hs_scratch_t **scratch);

hs_error_t hs_clone_scratch(const hs_scratch_t *src,

hs_scratch_t **dest);

void hs_free_scratch(hs_scratch_t *scratch);

size_t hs_scratch_size(const hs_scratch_t *scratch);

Network Platforms Group 18

NOTE: Intel does not develop or supply security signatures

• Hyperscan is designed to support most security
signatures

• For ‘exotic’ signatures, Hyperscan can be adapted

Pattern Sets (Signatures)

Open Source
Commercial

OEM/TEM
Proprietary

Application
Engine

Hyperscan

Pattern Database types

Network Platforms Group 19

Integration with Industry leading
IPS/IDS engines
Snort https://www.snort.org/

• Most widely deployed
IPS/IDS in the industry;

• Cisco (Sourcefire) owns the
GPL

• Hyperscan patch for 2.9 now
available

Suricata http://suricata-ids.org/

• Contender to Snort although
much smaller community

• Delivers greater
performances

• Multi-threaded
architecture

• Fast-growing adoption in
the industry

• Hyperscan is upstreamed in
Suricata 3.1

12

*Other brands and names are the property of their
respective owners

https://www.snort.org/
http://suricata-ids.org/

Network Platforms Group 20

Intel’s Pattern Matching Strategy

Hyperscan
01.org/hyperscan

Appliances, Servers, Networking
platforms

• Source access via BSD License
• Easy to customize and Integrate
• High performance

Network Security Industry

Intel® Architecture + DPDK + Hyperscan -> Best in class performance

Network Platforms Group 21

Hyperscan performance on IA

• Using commercial IPS
signature database

• HTTP test traffic; real
world

• Haswell-EP: 293Gbps

• Intel® Xeon ® CPU
E5-2658 v3 @
2.20GHz

• 2 socket, 12 cores
per socket, with
hyperthreading

• Note: Numbers are subject to change using
different benchmarking

• Using Tier-1 OEM commercial IPS signatures

Network Platforms Group 22

Hyperscan Performance on IA

Notes:
• Using database of 250 synthetic regex pattern sets (complex)
• Real world HTTP traffic
• 100% utilization, non-streaming mode
• Raw pattern matching performance, no use case
• Streaming mode: performance is ~2% lower

Intel® Processor CPU
Freq
(max
GHz)

Platform Details
Peak Scan

Perf
(GBps)

Per Core
Scan Perf

(Gbps)

Approx per-
core clock-for-

clock perf
(Gbps): scaled

to 2Ghz

Sock
ets

Cores
/

Threa
ds

L3
Cach

e
(MB)

Intel® Xeon®
Processor E5-
2699 v3

2.3 2
36/7

2
(total)

45 555 21.7 18.8

Intel® Xeon®
Processor D-
1540

2.0 1 8/16 12 86 11.1 11.1

Intel® Xeon®
Processor E3-
1285 v3

3.6 1 4/8 8 76 16.3 9.0

Intel® Atom™
Processor C2758

2.4 1 8/8 4 22 1.8 1.5

Network Platforms Group 23

23

“Total raw scanning performance” in Gbps on Intel(R) Xeon(R)
CPU E5-2699 v3 @ 2.30GHz on IPS workloads (HTTP to-server,
to-client and URI traffic). Tier 1 firewall vendor rulesets.

of
patterns 1C 2C 4C 18C 36C

36C
2T/C

streaming to_client_1 69 23.9 51.3 94.0 350.7 709.2 720.0

streaming to_client_2 142 21.0 40.7 79.4 275.6 562.6 577.5

streaming to_server_1 43 10.8 20.6 40.4 140.1 276.4 285.3

streaming to_server_2 235 6.0 11.1 22.6 75.3 155.1 147.5

block
to_server_uri_

1 13110 3.6 5.7 11.2 45.0 90.6 102.4

block
to_server_uri_

2 8801 4.4 8.8 17.2 73.1 142.6 149.4

Hyperscan Performance on IA

Network Platforms Group 24

IA Drives Performance(1)
General processor features

• Wide issue (tuned loops can issue 3-4 instructions per cycle
of useful work)

• Cache rich architecture

• High bandwidth to Level 1 and Level 2 cache

• Large L2 and L3 allows matching tables for literal
matching to stay cache resident

• Large L2 is unshared which means, unlike much of IA
competition, scaling keeps going – unshared L2
bandwidth is per-core not per-chip

• Hyperthreading enables additional performance (15-20% is
typical)

Hyperscan
(Software DPI)

Network Platforms Group 25

IA Drives Performance(2)
Instruction sets

• Process large numbers of characters using SIMD: SSE2,
SSSE3

• AVX2.0 enables processing of large amounts of input data in
one step

• SIMD operations are resource friendly and fast on IA;
enables large matching engines e.g. NFAs with big state
counts

• BMI1/BMI2 also a 1:1 match for many pattern matching
primitives: PEXT/PDEP replace a 10-30 instruction loop with
1 instruction

Hyperscan
(Software DPI)

Network Platforms Group 26

Benefits of Software DPI
• Fastest solution of it’s kind in the market that scales Intel® Architecture

• Enhance DPI performance of security products while increasing
inspection intelligence, without HW re-design.

• Enable field upgrades for legacy products

• SDN/NFV deployment flexibility

Industry transformation:
• Layer 7 intelligence
• Performance
• Scalability
• NFV

− Flexibility
− Scalable VMs
− Maximize CPU resources

CPU

HW DPI
(offload)

Hyperscan
(Software DPI)

Network Platforms Group

27

Example: Use cases for service-chained
VIPS

NFV Host (Compute Node)

VNF1 VNF2 VNF3

Accelerated vswitch
Open Stack

Orchestration

VM4
Tenant 1

VM5
Tenant 3

Port 0

VM4
Tenant 2

Port 1 Port 2 Port 3 Port 4 Port 5

IPS
Engine

CPU 1CPU 0

ingress

Hypersca
n

NFV Host (Compute Node)

VNF1 VNF2 VNF3

Accelerated vswitch
Open Stack

Orchestration

VM4
Tenant 1

VM5
Tenant 3

Port 0

VM4
Tenant 2

Port 1 Port 2 Port 3 Port 4 Port 5

IPS
Engine

CPU 1CPU 0

ingress

Hypersca
n

1. Run IPS inside the compute node 2. Run IPS inside the VM

Network Platforms Group 28

Hyperscan 4.4

Fat runtime:

Build several variants of the Hyperscan scanning engine specialised for

different processor feature sets,

and use the appropriate one for the host at runtime. This uses the "ifunc"

indirect function attribute provided by GCC and is currently available on

Linux only, where it is the default for release builds.

Hsbench:

Standard Hyperscan performance benchmarking tool

Welcome to contribute rules and data so that we can help to address your

issues

Can create a Hyperscan benchmarking corpus database from a supplied

group of Project Gutenberg texts, simple text and pcap files.

Note: small corpus could cause unstable performance

Network Platforms Group 29

Hyperscan 4.5 and beyond

Approximate matching:

Levenstein distance matching, better give an example

Stream state compression

New APIs to compress and decompress stream state

Future:

AVX512 implementation

Logical combination of patterns(and, or, not, ordered and, etc)

More pattern support(backreference, lookaround assertions)

29

Network Platforms Group 30

Hyperscan Podcast:
https://soundcloud.com/intelchipchat-networkinsights/hyperscan

Hyperscan Intel.com Landing Page:
http://www.intel.com/content/www/us/en/communications/hyperscan.html

Github Code Repository:
https://github.com/01org/hyperscan

Hyperscan Open Source Software Project:
https://01.org/hyperscan

Additional Links For more information
contact:
Jerry Zhang
jerry.zhang@intel.com

https://soundcloud.com/intelchipchat-networkinsights/hyperscan
http://www.intel.com/content/www/us/en/communications/hyperscan.html
https://github.com/01org/hyperscan
https://01.org/hyperscan

