

Ceph Goes Online at Qihoo 360

Xu Xuehan xuxuehan@360.cn

Outline

- Motivation
- Ceph RBD
- CephFS

Products at Qihoo 360

花椒直播

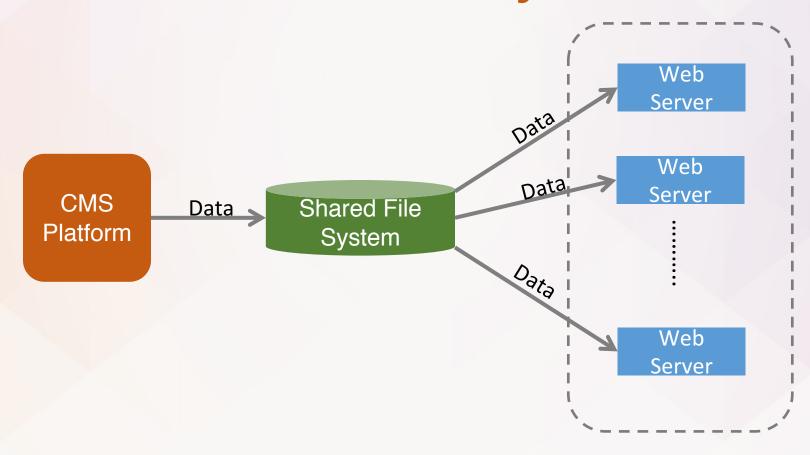
(5) 日白〇游戏

安全卫士 🤒 川水滴

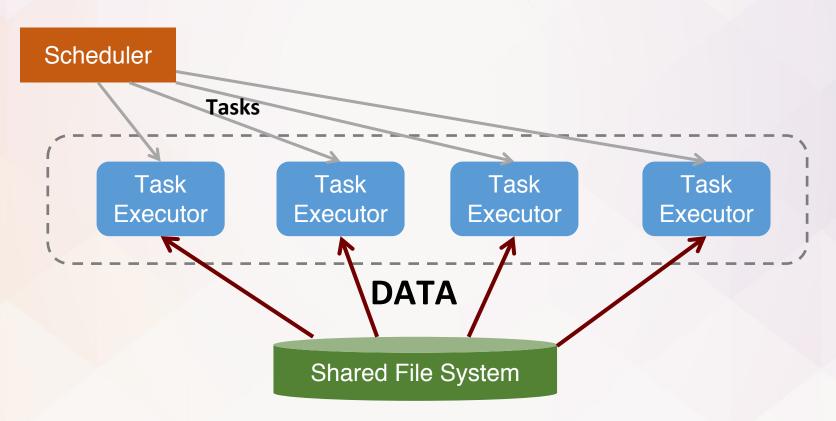
高业广告

- Virtualization
- Benefits
 - Avoidance of hardware resource waste
 - Ease of products deployment

- Not all problems solved
 - Long VM failover interval
 - Long VM creation time


Need for a separated VM image storage backend

- Need for a separated VM storage backend
 - Ceph RBD
 - Separation of Computation and Storage.
 - Scalable storage
 - Open source & active community support



Need for a shared file system

Need for a shared file system

Need for a shared file system

- CephFS
 - POSIX compliance
 - Read-after-write consistency
 - Scalability

Outline

- Motivation
- Ceph RBD
- CephFS

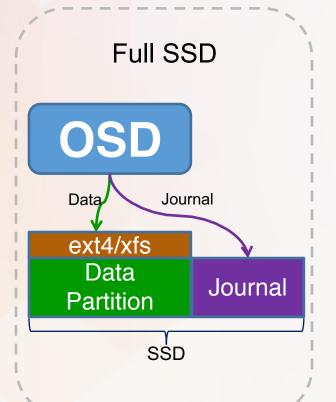
Production Deployment

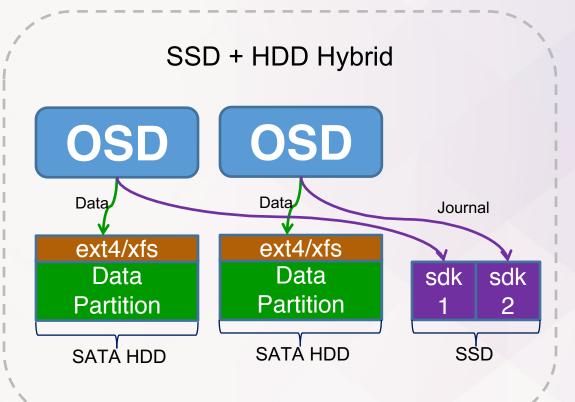
- 500+ Nodes
- 30+ Clusters
- Largest Cluster: 135 nodes, 1000+ OSDs
- Hammer 0.94.5, Jewel 10.2.5;

Ceph RBD

- Online Clusters
 - Cost VS Performance
 - Full SSD cluster, for users sensitive to I/O latency(Game Server, etc)

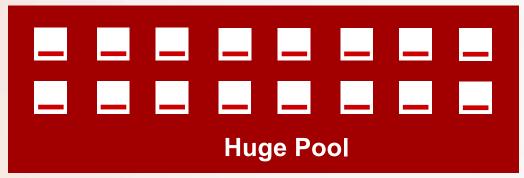
	OSD Nodes
CPU	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
RAM	128GB
NIC	10GbE
Hard Drives	8*SSD(SDLF1DAM-800G-1HA1)

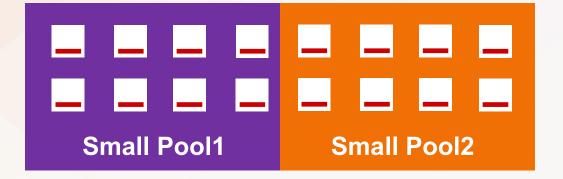

• SSD + HDD hybrid cluster, for other users


	OSD Nodes
CPU	Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz
RAM	64GB
NIC	10GbE
Hard Drives	2*SSD(INTEL SSDSC2BB300G4) + 9*HDD(WDC WD4000FYYZ-03UL1B2)

Online Clusters

Cost VS Performance





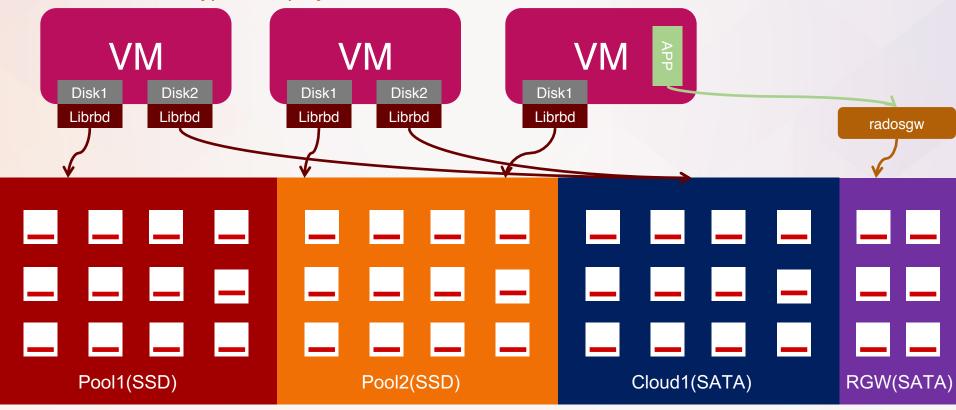
Online Clusters

- One Big Pool or Multiple Small Pools?
 - PipeMessenger (Default in Hammer/Jewel): two threads per connection

VS

Max_threads_per_osd = 2*(clients + 1 + 6*pg_num_per_osd)

Too many OSDs in one pool could lead to too many threads in one Machine!


Any other problem with huge pool?

WE DON'T KNOW YET

Online Clusters

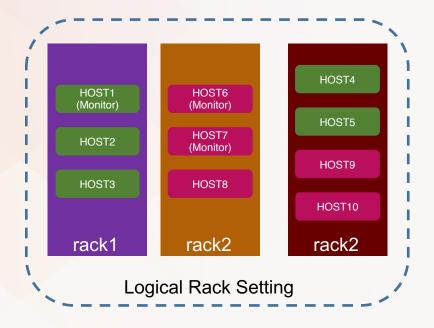
- One Big Pool or Multiple Small Pools?
 - Typical Deployment Pattern

RADOS CLUSTER



Online Clusters

- One Big Pool or Multiple Small Pools?(Openstack Modification)
 - OpenStack support for multi-pool(supported upstream now) and multi-cluster
 - VM creation based on rbd image clone(supported upstream now)
 - Flatten after VM image creation(supported upstream now)


- Final Deployment Pattern



Online Clusters

- Stability
 - No single point of failure

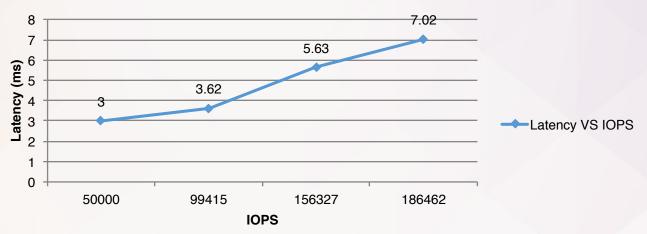
Online Clusters

- QoS
 - Done in QEMU
 - Full SSD clusters:
 - IOPS: 10 iops/GB
 - Throughput: 260 MB/s
 - SSD + HDD Hybrid clusters:
 - READ iops: 1400
 - WRITE iops: 300~600 iops
 - Throughput: 70 MB/s

Online Clusters

- Capacity
 - Thin provisioning
 - Capacity requirement prediction:

```
C_{total} = (N_{VM_{num}} * C_{capacity\_per\_vm}) / (T_{thin\_provision\_ratio} * 0.7)
```


Create new pool instead of pool expansion

Online Experience

- High I/O util on Full SSD cluster
 - I/O utils: 10%+(Full SSD Ceph) VS 1%-(Local disk)
 - Users may complain, but NOT a problem

Full SSD ceph: Latency VS iops

Online Experience

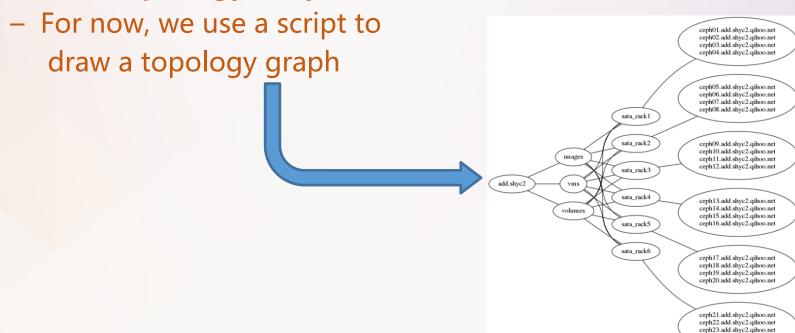
- Burst image deletion
 - Users remove massive images all at once
 - Cluster almost not available
 - Solution:
 - Modify openstack to remove images asynchronously, do concurrency control
- Scrub
 - Could severely impact I/O performance
 - Only between 2:00 and 6:00 AM

Online Experience

- Full SSD ceph (Hammer): really cpu consuming
 - 10⁴ IOPS per CPU (CPU: Xeon E5-2630 v3)
 - The more SSDs per cpu, the less IOPS per cpu

Single CPU states

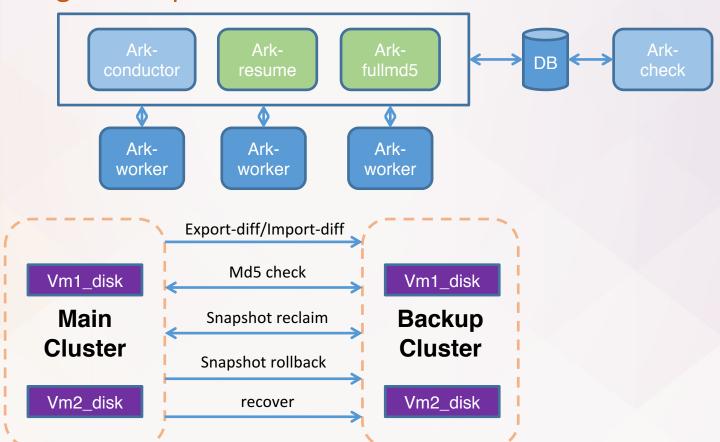
CPU %idle



ceph24.add.shyc2.qihoo.net

Online Experience

- One OSD full == Cluster full (Hammer, Jewel)
- Daily Inspection: An intuitional way to observe cluster topology maybe needed


Online Experience

- Tracing
 - Hard to reproduce some online problems
 - Can't turn on high priority log online
- Alerting
 - Integrate with other alerting services like Nagios?
 - A new alerting module? Or at least some alerting interface for users to capture exceptional events?

Online Experience

RBD image Backup

Outline

- Motivation
- Ceph RBD
- CephFS

- MDS Performance Evaluation(mdtest)
 - MDS machine

	MDS nodes
CPU	Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
RAM	192GB
NIC	10GbE
OS	CentOS 7.1.1503

- 1 active MDS, 1 standby-replay MDS
- 27 OSDs in data pool, 6 SSD OSDs in metadata pool
- 7*10⁶ files/directories, 70 clients

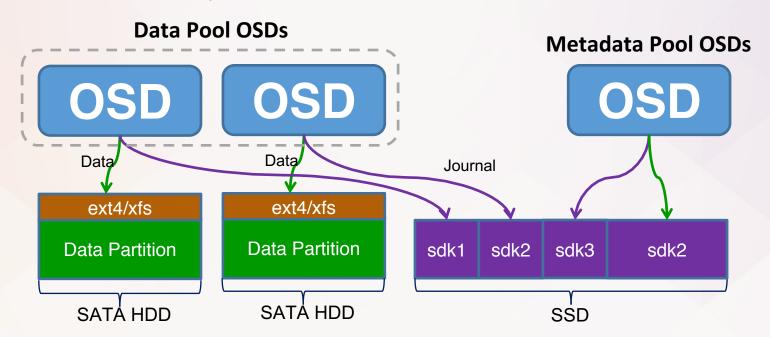


MDS Performance Evaluation

Metadata Operation	Result (ops/sec)
File Creation(shared directory)	2624.09
File Creation(job separated directories)	4311.339
Stat	11000
File Removal(shared directory)	788.960
File Removal(job separated directories)	2531.538
Directory Creation(shared directory)	794.030
Directory Creation(job separated directories)	3497.949
Directory Removal(shared directory)	697.333
Directory Removal(job separated directories)	2848.889
File Open	6757.269269
File Rename(shared directory)	485.083123
File Rename(job separated directories)	3073.370671
Utime	2947.364765
Readdir	243844.3312

- MDS Performance Evaluation
 - Slow metadata modification writeback
 - Caused by O(n) list::size() in gcc earlier than 5.0
 - https://github.com/ceph/ceph/commit/7e0a27a5c8b7d12d378de
 4d700ed7a95af7860c3

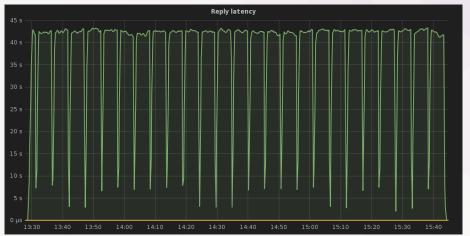
Single Thread MDS, low cpu utilization



- Considerations about putting CephFS online
 - Access Control
 - Namespace?
 - Kernel limitation → One pool for each user
 - Active-Active MDS or Active-Standby MDS?
 - QoS
 - No available solution yet

Online Clusters

- 3 small Clusters
 - 1 active MDS, 1 standby-replay MDS
 - 3 OSD/MON machines, 27 OSDs in data pool, 6 SSD OSDs in metadata pool


Online Experience

- mds "r" cap must be given to every user
 - Users may see directory subtree structures of each others.
- Kernel limitations
 - Most users use CentOS 7.4, kernel 3.10.0-693, many patches are NOT backported
 - Some users run kernel 2.6.32....☺
 - Could NFS or Samba be a solution

Online Experience

- Slow "getattr" when lots of clients are issuing reads/writes
 - http://tracker.ceph.com/issues/22925
 - getattrs are blocked in filelock's LOCK_SYNC_MIX state
 - When filelock gets out LOCK_SYNC_MIX state, mds has to reprocess all blocked getattrs one by one
 - Almost every getattr request make filelock go into LOCK_SYNC_MIX state again

Thanks Q&A