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Security for Machine Learning

• Integrity

– Training

– Deployment/Prediction 

• Confidentiality

– Users: private training and testing data

– Service providers: confidential algorithms, models, 
and hyperparameters
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Training a Machine Learning Model
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Compromising Integrity at Training
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Recommender Systems are Vulnerable to
Training Data Poisoning Attacks

• Recommender system is an important component of
Internet

– Videos, products, news, etc.

• Common belief: recommend users items matching their
interests

• Our work: injecting fake training data to make
recommendations as an attacker desires
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Co-visitation Recommender Systems

• Key idea: Items that are frequently visited together in 
the past are likely to be visited together in the future
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Co-visitation Recommender Systems
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Our Attacks

• Goal: Promoting a target item

• Injecting fake co-visitations between a target item
and some carefully selected items

– The target item will appear in their recommendation lists

• Can attack YouTube, Amazon, eBay, LinkedIn, etc.
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Security for Machine Learning

• Integrity

– Training

– Deployment/Prediction: adversarial examples

• Confidentiality

– Users: private training and testing data

– Service providers: confidential algorithms, models,
and hyperparameters
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Adversarial Examples 
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Adversarial Examples

• Normal example x

• Classifier C

• Adversarial example x’=x+δ

• t: target label, C(x’)=t

11

Minimize   d(x,x’)

Subject to (1) C(x’) = t

(2) x’ is a legitimate example

L0, L2, L∞ norm 

of the noise δ 



Measuring Adversarial Examples  
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A normal example: digit 0 An adversarial example

with a target label 9
Xiaoyu Cao and Neil Zhenqiang Gong. “Mitigating Evasion Attacks to Deep Neural 

Networks via Region-based Classification”. In ACSAC, 2017



Observations

• Normal examples are not robust to small 
carefully crafted noise

– Existence of adversarial examples

• Normal examples are robust to small random
noise

• Adversarial examples are not robust to small 
random noise
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Our Region-based Classification
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Our Region-based Classification
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Evaluations on MNIST for Carlini and Wagner 
(CW) Attacks (IEEE S&P’17)
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Accuracy on normal examples

Different versions of CW attacks

Existing 

defenses

Mitigate adversarial examples without accuracy loss



Good Use of Adversarial Examples: 
Protecting Privacy

• Inference attacks: an attacker infers a user’s private
attributes using its public data

– Private attributes: political view, sexual orientation, etc.

– Public data: page likes on Facebook, rating scores, etc.

• An attacker has a classifier to infer private attributes

• A user’s public data is a classification example
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Good Use of Adversarial Examples: 
Protecting Privacy

• User adds carefully crafted noise to evade the 
attacker’s classifier

– Making the public data an “adversarial example”

• Key challenge: how to guarantee utility of the public 
data?
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Security for Machine Learning

• Integrity

– Training

– Deployment/Prediction: adversarial examples

• Confidentiality

– Users: private training and testing data

– Service providers: confidential algorithms, models, 
and hyperparameters
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Machine Learning as a Service (MLaaS)

• MLaaS enables users with limited computing power 
or limited machine learning expertise to use machine 
learning techniques
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How MLaaS is Used?
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Confidentiality for Users

• Training data

• Testing data

• Approaches

– Trusted processors, e.g., Intel SGX

– Cryptographic techniques, e.g., secure multi-party 
computation

– Statistical methods, e.g., differential privacy
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Training a Machine Learning Model
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Confidentiality for Service Providers
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Stealing Hyperparameters

• We propose a general framework to steal 
hyperparameters in MLaaS

• Save economical costs without sacrificing 
model performance

• New defenses are needed
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Conclusion

• Security is a big challenge for machine learning

• Integrity
– Training
– Deployment/Prediction

• Confidentiality
– Users 
– Service providers


