

Greenplum 助力科学计算

马丽丽 2017.8.23

Pivotal

Outline

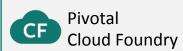
Greenplum Architecture
Greenplum supports Data Science
Data Science Bundle for Python & R
When PL meets container
Q&A

About Pivotal

Founded April 2013

2000+ Employees | 1000+ Customers

Spun out from EMC & VMware


Big Data

Pivotal Big Data Suite

 Data Warehouse, SQL-on-Hadoop and In-Memory Data Grid

Cloud

 Platform-as-a-Service (PaaS) software with multi-cloud support

Agile Development

Pivotal Labs

 World-class application development services

Pivotal Big Data Suite (BDS)

Pivotal Big Data Suite Open Source data management portfolio

PIVOTAL GREENPLUM DATABASE

Data warehouse based on open source Greenplum
Database

PIVOTAL HDB

Advanced analytic SQL database for Hadoop, based on open source Apache HAWQ

PIVOTAL GEMFIRE

High-performance inmemory data grid based on Apache Geode

Greenplum Architecture

SYSTEM

CLIENT ACCESS

PSQL, ODBC, JDBC

BULK LOAD/UNLOAD

GPLoad, GPFdist, External Tables, GPHDFS

ADMIN TOOLS

GP Perfmon, GP Support

3rd PARTY TOOLS

Compatible with Industry Standard BI & ETL Tools

DATA PROCESSING

SQL STANDARD COMPLIANCE

MASSIVELY
PARALLEL
PROCESSING (MPP)

BIG DATA

QUERY

OPTIMIZER

IN-DATABASE PROGRAMMING LANGUAGES

PL/pgSQL, PL/Python, PL/R, PL/Perl, PL/Java, PL/C IN-DATABASE ANALYTICS & EXTENSIONS

MADlib, PostGIS, PGCrypto

DATA STORAGE

FULLY ACID COMPLIANT TRANSACTIONAL DATABASE

POLYMORPHIC STORAGE

HEAP, Append Only, Columnar, External, Compression MULTI-VERSION CONCURRENCY CONTROL (MVCC)

INDEXES

B-Tree, Bitmap, GiST

Outline

Greenplum Architecture
Greenplum supports Data Science
Data Science Bundle for Python & R
When PL meets container
Q&A

Greenplum Support on Data Science

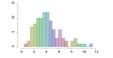
- ApacheTM MADlib[®] (incubating)
- GPText
- PL/Python
- PL/R

Apache MADlib: In-Database Machine Learning Learning

- Apache[™] MADlib[®] (incubating) is an open-source library for scalable in-database analytics
- Provides parallel implementations of mathematical, statistical and machine learning methods for structured and unstructured data
- Supports Apache HAWQ, Greenplum Database and Postgres
- Analytics on all data in-database, without sampling (produces more accurate results, less effort)

http://madlib.incubator.apache.org

MADlib: SQL-Based Machine Learning


Train a model

```
SELECT madlib.linregr_train('houses', --- Input table --- Output table --- Variable to predict --- Features in data --- Group data to create --- multiple models
```

Predict for new data

MADlib Functions

Generalized Linear Models

- · Linear Regression
- · Logistic Regression
- Multinomial Logistic Regression
- Ordinal Regression
- Cox Proportional Hazards Regression
- · Elastic Net Regularization
- Robust Variance (Huber-White),
 Clustered Variance, Marginal Effects

Matrix Factorization

- Singular Value Decomposition (SVD)
- Low Rank

Linear Systems

- Sparse and Dense Solvers
- Linear Algebra

Other Machine Learning Algorithms

- Principal Component Analysis (PCA)
- Association Rules (Apriori)
- Topic Modeling (Parallel LDA)
- Decision Trees
- Random Forest
- Support Vector Machines
- · Conditional Random Field (CRF)
- Clustering (K-means)
- Cross Validation
- · Naïve Bayes
- Support Vector Machines (SVM)

Time Series

ARIMA

Path Functions

Operations on Pattern Matches

Descriptive Statistics

Sketch-Based Estimators

- CountMin (Cormode-Muth.)
- FM (Flajolet-Martin)
- MFV (Most Frequent Values)

Correlation and Covariance Summary

Inferential Statistics

Hypothesis Tests

Utility Modules

Array and Matrix Operations

Sparse Vectors

Random Sampling

Probability Functions

Data Preparation

PMML Export

Conjugate Gradient

Stemming

GPText

- · Combine with Solr
- Provide solid text analysis and index function
- Computing distributed in segment, can be run simultaneously
- Combine SQL and text analysis together

Procedural Language: PL/Python

```
CREATE TABLE sales (id int, year int, qtr int, day int, region text) DISTRIBUTED BY (id);
INSERT INTO sales VALUES
(1, 2014, 1,1, 'usa'),
(2, 2002, 2,2, 'europe'),
(3, 2014, 3,3, 'asia'),
(4, 2014, 4,4, 'usa'),
(5, 2014, 1,5, 'europe'),
(6, 2014, 2,6, 'asia'),
(7, 2002, 3,7, 'usa');
CREATE OR REPLACE FUNCTION mypytest(a integer)
 RFTURNS text
AS $$
 rv = plpy.execute("SELECT * FROM sales ORDER BY id", 5)
 region = rv[a]["region"]
 return region
$$ language plpythonu;
```

SELECT mypytest(2);

Procedural Language: PL/R

```
CREATE OR REPLACE FUNCTION r_norm(n integer, mean float8,
    std_dev float8) RETURNS float8[] AS

$$
    x<-rnorm(n,mean,std_dev)
    return(x)

$$
LANGUAGE 'plr';</pre>
```

```
    CREATE TABLE test_norm_var
        AS SELECT id, r_norm(10,0,1) as x
        FROM (SELECT generate_series(1,30:: bigint) AS ID) foo
        DISTRIBUTED BY (id);
```


Outline

Greenplum Architecture
Greenplum supports Data Science
Data Science Bundle for Python & R
When PL meets container
Q&A

Procedural Language -- Pain Point

Need install third-party Python/R binaries before using

- Unsecure Execution Environment for Python and R
 - Normal user does not have ability to create function in untrusted language
 - Function failure may cause postgres process restart

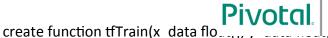
Data Science Bundle for Python

Module Name	Description/Used For
Beautiful Soup	Navigating HTML and XML
Gensim	Topic modeling and document indexing
Keras	Deep learning
Lifelines	Survival analysis
lxml	XML and HTML processing
NLTK	Natural language toolkit
NumPy	Scientific computing
Pandas	Data analysis
Pattern-en	Part-of-speech tagging
pyLDAvis	Interactive topic model visualization
РуМСЗ	Statistical modeling and probabilistic machine learning
scikit-learn	Machine learning data mining and analysis
SciPy	Scientific computing
spaCy	Large scale natural language processing
StatsModels	Statistical modeling
Tensorflow	Numerical computation using data flow graphs
XGBoost	Gradient boosting, classifying, ranking

Data Science Bundle for R

101 11			
abind	gplots	quantreg	
adabag	gtable	R2jags	
arm	gtools	R6	
assertthat	hclust	randomForest	
вн	hms	RColorBrewer	
bitops	igraph	Rcpp	
car	labeling	RcppEigen	
caret	lattice	readr	
caTools	lazyeval	reshape2	
coda	lme4	rjags	
colorspace	lmtest	RobustRankAggreg	
curl	magrittr	ROCR	
data.table	MASS	rpart	
DBI	Matrix	RPostgreSQL	
dichromat	MCMCPack	sandwich	
digest	minqa	scales	
dplyr	mts	SparseM	
e1071	munsell	stringi	
forecast	neuralnet	stringr	
foreign	nloptr	survival	
gdata	nnet	tibble	
ggplot2	pbkrtest	tseries	
glmnet	plyr	Z00	

Case: GP + Tensorflow for Linear Regression


Table:

Two columns: col1 & col2

Linear dependency: col2 = w*col1 + b

 We want to infer the relationship between the two columns
 Select tfTrain(agg_train(col1), agg_train(col2)) from test;

col1	col2
1	0.4
2	0.5
5	0.8

UDA Part

```
create function sfunc train(state float[], a float)
returns float[] as
$$
state.append(a)
return state
$$ language plpythonu;
create aggregate agg train(float)
sfunc=sfunc_train,
stype=float[],
initcond='{}'
```

```
returns numeric[] as
$$
                                           TF Part
import tensorflow as tf
import numpy as np
W = tf.Variable(tf.random uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x data + b
loss = tf.reduce mean(tf.square(y - y data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize all variables()
sess = tf.Session()
sess.run(init)
for step in range(201):
  sess.run(train)
return np.append(sess.run(W)[0], sess.run(b)[0])
$$ language plpythonu;
```


Outline

Greenplum Architecture
Greenplum supports Data Science
Data Science Bundle for Python & R
When PL meets container
Q&A

Motivation

- Simply the process of developing functions for python/R
- Secure environment for PL/Python and PL/R
 - Code in python or R should not be able to modify data files on local disk, including database file, configuration file, or directory.
 - o Code in python or R should not be able to connect to local database using gpadmin from localhost.
- Isolation. Independent execution
 - Failure in PL does not affect running QE process and postmaster process.
 - o PL running does not change share memory of QE process.
- Flexibility. Users have the flexibility to configure their own running environment, for example, python version
- Performance. Performance should not be impacted so much

Goal

- Implement a secure execution environment, normal user can create their own Python/R function
- Function run on same host as QE, or dedicated computing environment
- Function running failure does not affect other processes on segment postgres
- Performance controlled in 2X times slow-down compared with untrusted language
- Container lifecycle consistent with QE
- Basic debug information can be gathered from container

Container Benefits

- Independent Namespace
- Isolated Execution Environment
- Controllable Resource Occupation
- Easy to scale

Usage

- Install & Configure
 - Embedded in GPDB new binaries
 - Supporting Docker Image: Pivotal provided & User self-defined
 - Single Script for configuring
 - User just need have docker environment in GPDB cluster
 - One simple script including following functions:
 - plcontainer image --install \$imageFile \$hostFile installing images
 - plcontainer image --configure \$ImageName \$ImageFile configuring images to Language recognizable format

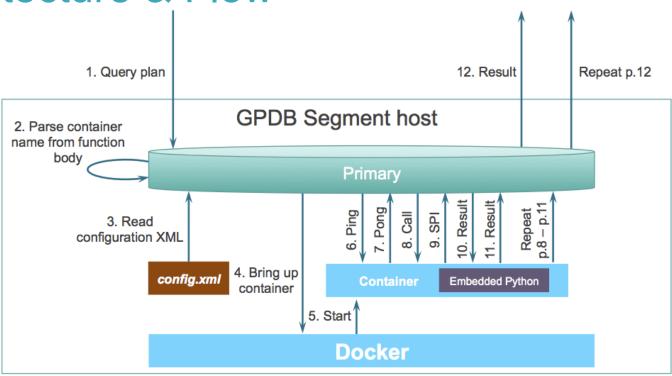
Usage - cont.

Create language

Create LANGUAGE plcontainer;

Create function

```
CREATE OR REPLACE FUNCTION pylog100() RETURNS double precision AS $$
# container: plc_python
import math
return math.log10(100)
$$ LANGUAGE plcontainer;
```


Execute Function

```
Select pylog(100);
```


Architecture & Flow

Future

- Function run not bundled with QE
- More mechanism for secure environment support, i.g, Garden, separate process
- Contribute back to Postgres community

We're Hiring

- We're hiring Product Manager
- Please contact sgao@pivotal.io

Q&A

PIVOE