
RADOS:Improvements and Roadmap



Luminous	Feature:	BlueStore

●No	more	full-data	journaling!	(Twice	as	fast	on	streaming	writes!)

●Checksum	all	data

–Detect	bit	flips	and	media	errors	on	every	read,	not	just	on	scrub

●In-line	compression

●“filestore	splitting”:	totally	gone!



Luminous	Feature:	EC	Overwrites

●Erasure	coded	pools	in	Ceph	can	now	overwrite	data,	not	just	append

–(Still	not	supported:	omap,	object	classes)

●RBD,	CephFS	enabled

●Performance:	mostly	higher	latency,	but	also	higher	large-block	streaming	
bandwidth	(less	data	to	write	to	disk!)

●Relies	on	BlueStore	features	to	function



Luminous	Feature:	ceph-mgr

●Enables	new	kinds	of	automation	in	Ceph

●Offloads	some	work	from	monitors	(PGStats!),	improving	cluster	scalability

●Web	dashboard

–See	Lenz	Grimmer	tomorrow	at	2:30	for	the	latest	news



Luminous	Feature:	Performance/Predictability

●“Client	Backoff”:	if	the	client	sends	too	much	I/O	for	a	stuck	object/PG,	the	
OSD	sends	a	“backoff”	message	and	throws	it	out

–Means	we	focus	I/O	on	live	objects	instead	of	blocking	the	whole	
OSD/cluster

●Async	Recovery	Deletes:	objects	are	deleted	during	recovery	(while	the	PG	
is	live	and	serving	I/O)	instead	of	blocking	peering



Luminous	Feature:	Usability	Improvements

●Separate	configuration	defaults	for	SSDs	and	HDDs

●“ceph	osd	[new|destroy]”	commands	simplify	adding	and	replacing	OSDs

●Centralized		version	reporting	for	cluster	and	clients

–“ceph	features”	makes	it	clear	if	you	are	running	different	versions

–“ceph	osd	set-require-min-compat-client”	disables	features	that	break	your	
clients

●Jumbo	pings:	OSD	heartbeating	will	break	if	jumbo	frames	break	your	
network



Luminous	Feature:	Usability	Improvements	2

●PG	overdose	protection:	limits	the	number	of	PGs	per	OSD,	to	prevent	out-
of-memory	conditions

●Device	classes:	CRUSH	automatically	generates	different	rules	for	SSDs	and	
HDDs

–Good	for	easily	putting	index	pools	on	SSDs

–But	does	not	work	if	you	mix	SSDs	and	HDDs	in	one	pool



Luminous	Feature:	PG	Balancing

●CRUSH	placement	is	pseudo-random,	so	the	data	is	not	evenly	distributed	
across	OSD	nodes

●ceph-mgr	Balancer	module	improves	that	data	distribution

–“crush	weight	sets”	for	better	balance	that	is	compatible	with	old	clients

–“upmap”	for	perfect	balance,	but	requires	Luminous	clients



Mimic:	Centralized	Config

●Stored	on	monitors

●One	place	to	update,	validate

●See	history,	diff	running	vs	configured

●Manageable	by	dashboard	in	the	future



Mimic:	Async	Recovery

●Recovery	blocks	I/O

●Backfill	avoids	this	by	putting	OSDs	outside	the	write	path

●Async	recovery	takes	the	same	approach

●Particularly	helpful	for	highly	contended	objects,	like	RGW	bucket	indexes



Mimic:	PG	Merging

●pg_num	only	able	to	increase	in	the	past

●No	longer	worry	about	creating	too	many	PGs

●Enables	automatic	tuning	of	PG	count

●Groundwork	for	the	future,	so	users	setting	up	a	pool	do	not	need	to	know	
about	PGs



Mimic:	ceph-volume

●Replacement	for	ceph-disk

●No	udev	–	predictable,	no	longer	race	condition	prone

●Works	with	existing	OSDs

●Uses	lvm	to	store	metadata	for	new	OSD	disks



Future	Work

●msgr2	protocol	–	on-the-wire	encryption,	groundwork	for	zero-copy,	
extensible	for	future	changes

●Partial	recovery	–	optimizations	to	recover	changes	to	objects,	rather	than	
the	entire	object

●QoS	–	ongoing	integration	of	dmclock

●Usability	improvements	–	see	dashboard	and	mgr	talks



OSD	Future:	Background

●Storage	devices	becoming	faster

●OSD	uses	too	much	CPU	per	op	to	take	advantage	of	fastest	NVMe	devices

●Call​​​​​back-based	style	is	difficult	to	maintain,	allocation	and	copy	heavy

●Async	reads	needed	for	fully-featured	EC	pools



OSD	Future:	SeaStar

●Designed	for	high	performance

●shared-nothing	architecture	among	cores

●Core-local	memory	allocator

●No	atomic	operations	or	locks	required	unless	crossing	cores

●Asynchrony	based	on	polling	for	network	and	storage	devices

●Future-promise	programming	model



OSD	Future:	SeaStar	conversion

	

●Converting	to	SeaStar	requires	rewriting	blocking	calls	to	be	asynchronous,	
via	futures

●Start	at	the	network	layer,	and	go	down

●To	enable	posix	threads	to	talk	to	SeaStar,	add	‘alien’	thread	concept

●Eventually	use	DPDK	for	networking,	SPDK	for	storage,	and	SeaStar	for	
scheduling	–	kernel	bypass,	zero-copy	I/O


