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Overview
 BLOCK MQ Background

- Introduced in V3.13

- for better supporting new storage of NVMe

- address scalability issue of q→queue_lock

- initially without any IO scheduler 
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BLK MQ Framework
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BLOCK MQ IO SCHEDULER
 BLOCK MQ IO Scheduler background
 Better support traditional Storage device
 Replace blk_queue_bio() path totally in future
 Available in V4.11, initially with mq-deadline only
 BFQ and Kyber is merged in V4.12 
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MQ IO Scheduler Framework
 BLOCK MQ IO Path(blk_mq_make_request)
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MQ IO Merge Model
 IO scheduler queue Vs. LLD queue

IO Merge is possible IFF IO scheduler queue depth > LLD queue’s
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MQ IO Merge Model
 IO scheduler queue depth

- controlled via /sys/block/XXX/queue/nr_requests

- respected via allocating request
 LLD queue depth

- driver/device specific way to control, or not controllable

- .queue_rq() returns BLK_STS_RESOURCE when LLD

queue is full

- LLD queue depth is highly related with storage device performance
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MQ IO Merge Model
 None Scheduler

- introduced for NVMe at the beginning

- no scheduler queue, so IO merge is possible IFF driver has

specific queue depth, such as q->queue_depth on SCSI,

not possible on NVMe actually

- IO merge is on percpu SW queue, and use simple policy,

merge isn’t efficient
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MQ IO Merge Model
 MQ-DEADLINE / BFQ

- basically similar with old block

- introduced for making MQ working well on traditional disks

(such as, SCSI)

- IO merge is good because of per-request-queue scheduler queue

- may not scale well for high performance MQ devices, such as 
NVMe, SCSI FC/SRP, because of per-request-queue lock
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MQ IO Merge Model
 Kyber

- introduced for high performance devices, such as NVMe, 
NVMe OF

     - introduce READ, SYNC_WRITE, OTHER domains, and each

     domain has its queue depth for simulating LLD queue depth,

     - IO merge is possible because of domain queue

     - IO merge is on percpu SW queue
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Block legacy IO Dispatch Model
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MQ IO Dispatch Model
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MQ IO Dispatch Model
 Issues

- hctx->dispatch can’t be dispatched one by one without 
holding hctx→lock; between moving hctx→disptach 
moved to one temp list and being flushed out, scheduler 
can’t be dequeued

- q->queue_depth is often among the whole request 
queue, all hctx should respect this limit  
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MQ IO Dispatch Model
 Solutions for these issues

- bypass hctx->dispatch totally

- reserving budget before before dequeuing from IO scheduler

queue by introducing .get_budget and .put_budget in blk_mq_ops

- will be merged to V4.15 if everything is fine

- better than legacy path in theory without holding per-queue lock 
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Performance data
 mq-deadline(fio, libaio, direct, bs=4k, queue_depth=64, jobs=64, disk=SRP/IB, V4.14-rc4)

-------------------------------------------------------------------------------

               |  V4.14-rc4     | V4.14-rc4           | patched V4.14-rc4

IOPS(K)  |  DEADLINE   |MQ-DEADLINE  |MQ-DEADLINE 

-------------------------------------------------------------------------------

read        |       450.0       |      154.12          |       474.0 

-------------------------------------------------------------------------------

write        |      419.65     |      135.88           |      481.89 

--------------------------------------------------------------------------------
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Next Step of MQ IO scheduler
 Improving on Kyber

- pre-defined/hard coded  domain depth

- hard coded latency

- domain queue depth adjust approach

- very young
 SSD friendly IO schedule  
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Next Step of MQ IO scheduler
 One big challenge

- need to provide excellent support on modern high 
performance storage, such as NVMe, NVMe OF

- meantime not cause performance regression on

traditional storage, such as SCSI  



THANK YOU


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

