
INTRODUCTION BLOCK MQ IO
SCHEDULER

Ming Lei <ming.lei@redhat.com>, Red Hat

Oct. 22, 2017, Beijing, CLF2017

mailto:ming.lei@redhat.com

Introduction BLOCK MQ IO Scheduler2

Overview
 BLOCK MQ Background

- Introduced in V3.13

- for better supporting new storage of NVMe

- address scalability issue of q→queue_lock

- initially without any IO scheduler

Introduction BLOCK MQ IO Scheduler3

BLK MQ Framework

Introduction BLOCK MQ IO Scheduler4

BLOCK MQ IO SCHEDULER
 BLOCK MQ IO Scheduler background
 Better support traditional Storage device
 Replace blk_queue_bio() path totally in future
 Available in V4.11, initially with mq-deadline only
 BFQ and Kyber is merged in V4.12

BLOCK MQ IO Scheduler Introduction5

MQ IO Scheduler Framework
 BLOCK MQ IO Path(blk_mq_make_request)

Introduction BLOCK MQ IO Scheduler6

MQ IO Merge Model
 IO scheduler queue Vs. LLD queue

IO Merge is possible IFF IO scheduler queue depth > LLD queue’s

Introduction BLOCK MQ IO Scheduler7

MQ IO Merge Model
 IO scheduler queue depth

- controlled via /sys/block/XXX/queue/nr_requests

- respected via allocating request
 LLD queue depth

- driver/device specific way to control, or not controllable

- .queue_rq() returns BLK_STS_RESOURCE when LLD

queue is full

- LLD queue depth is highly related with storage device performance

Introduction BLOCK MQ IO Scheduler8

MQ IO Merge Model
 None Scheduler

- introduced for NVMe at the beginning

- no scheduler queue, so IO merge is possible IFF driver has

specific queue depth, such as q->queue_depth on SCSI,

not possible on NVMe actually

- IO merge is on percpu SW queue, and use simple policy,

merge isn’t efficient

Introduction BLOCK MQ IO Scheduler9

MQ IO Merge Model
 MQ-DEADLINE / BFQ

- basically similar with old block

- introduced for making MQ working well on traditional disks

(such as, SCSI)

- IO merge is good because of per-request-queue scheduler queue

- may not scale well for high performance MQ devices, such as
NVMe, SCSI FC/SRP, because of per-request-queue lock

Introduction BLOCK MQ IO Scheduler10

MQ IO Merge Model
 Kyber

- introduced for high performance devices, such as NVMe,
NVMe OF

 - introduce READ, SYNC_WRITE, OTHER domains, and each

 domain has its queue depth for simulating LLD queue depth,

 - IO merge is possible because of domain queue

 - IO merge is on percpu SW queue

Introduction BLOCK MQ IO Scheduler11

Block legacy IO Dispatch Model

Introduction BLOCK MQ IO Scheduler12

MQ IO Dispatch Model

Introduction BLOCK MQ IO Scheduler13

MQ IO Dispatch Model
 Issues

- hctx->dispatch can’t be dispatched one by one without
holding hctx→lock; between moving hctx→disptach
moved to one temp list and being flushed out, scheduler
can’t be dequeued

- q->queue_depth is often among the whole request
queue, all hctx should respect this limit

Introduction BLOCK MQ IO Scheduler14

MQ IO Dispatch Model
 Solutions for these issues

- bypass hctx->dispatch totally

- reserving budget before before dequeuing from IO scheduler

queue by introducing .get_budget and .put_budget in blk_mq_ops

- will be merged to V4.15 if everything is fine

- better than legacy path in theory without holding per-queue lock

Introduction BLOCK MQ IO Scheduler15

Performance data
 mq-deadline(fio, libaio, direct, bs=4k, queue_depth=64, jobs=64, disk=SRP/IB, V4.14-rc4)

 | V4.14-rc4 | V4.14-rc4 | patched V4.14-rc4

IOPS(K) | DEADLINE |MQ-DEADLINE |MQ-DEADLINE

read | 450.0 | 154.12 | 474.0

write | 419.65 | 135.88 | 481.89

--

Introduction BLOCK MQ IO Scheduler16

Next Step of MQ IO scheduler
 Improving on Kyber

- pre-defined/hard coded domain depth

- hard coded latency

- domain queue depth adjust approach

- very young
 SSD friendly IO schedule

Introduction BLOCK MQ IO Scheduler17

Next Step of MQ IO scheduler
 One big challenge

- need to provide excellent support on modern high
performance storage, such as NVMe, NVMe OF

- meantime not cause performance regression on

traditional storage, such as SCSI

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

