
使用 React&Redux 开发
现代WEB应用 Shi Kelong

About Leyser System

 Leyser System
• School Management Software

• 20+ years history, 9+ major version, 3000+ school user.

• Version 9 is based on Winform.

• Serve 3000 private schools in Japan

 Leyser Plus
• Include several single page application (Desktop / Mobile)

• Front end technology stack - React, Redux, React-

Bootstrap, Webpack.

Modern Web Application

Architecture

Asset packaging

Run-time state

Modern Web Application

Models as the single source of truth.

Views observe model changes.

Minimizing DOM dependent-code.

Maybe Single-Page Application

Quated from http://singlepageappbook.com

OUTLINE

 React

 Redux

 Practices

What Is React?

A JavaScript library for building user

interfaces

•Declarative

•Component-Based

•Learn Once, Write Anywhere

The V in MV* pattern

React: JSX

JSX just provides syntactic sugar for the

React.createElement function.

Requires compilation process like Babel.

React: Components and Props

Components let you split the
UI into independent.

Components let you reusable
pieces, and think about each
piece in isolation.

It like Javascript functions. It
accept inputs(called props)
and return React elements.

React: Components and Props

Props are Read-Only

Anyting can be passed as a prop.

All React components must act like pure functions

with respect to their props.

React: State and Lifecycle

State is Component’s local data.

State is update by calling this.setState

You should not modify state directly.

State Updates May Be Asynchronous.

Every call to setState triggers a re-render.

Component
Life-cycle

Quoted from
http://www.jianshu.com/p/4784216b8194

React: Container/Presentational
Components

“Container”/ “Smart” components

•Are concerned with how things work.

•May contain both presentational and container

components, but usually don’t have any DOM

markup of their own

•Provide the data and behavior to presentational or

other container components.

•Are usually generated using higher order

components.

React: Container/Presentational
Components

“Presentational” / “Dumb” components.

•Are concerned with how things look.

•May contain both presentational and container

components inside and usually have some DOM

markup and styles of their own.

•Receive data and callbacks exclusively via props.

•Rarely have their own state (when they do, it’s UI

state rather than data).

 https://medium.com/@dan_abramov/smart-and-
dumb-components-7ca2f9a7c7d0

React: Higher-Order Components

 A higher-order component (HOC) is an advanced

technique in React for reusing component logic.

 A higher-order component is just a function that takes

an existing component and returns another component

that wraps it.

 HOC is a patterns for composition.

React: Communication between
Components

 parent component to
child or lower-level
component: props,
context.

 child to parent or high-
level component: callback.

 other: subscribe/publish
global event.

React: Integrating with Other
Components

React Ecosystem can’t provide all components or

Libraries we need. So we need integrate with other

libraries/components.

We integrate react with SpreadJS, Echarts, etc.

React: Integrating with Other
Components

You should initialize the third-party component in

suitable life-cycle hooks.

You should let the third-party component management

it’ own display and behavior.

 So, Just pass / update your react component’s props

to the third-party component.

 Don’t forget dispose the third-party component’

instance.

What Is Redux?

Redux is a predictable state container for
JavaScript apps.

You can use Redux together with React,
or with any other view library.

Redux evolves the ideas of Flux, but
avoids its complexity.

Redux : Tree Principles

Single source of truth: The only way to change the
state is to emit an action, an object describing what
happened.

State is read-only: The only way to change the state is
to emit an action, an object describing what happened.

Changes are made with pure functions: To specify
how the state tree is transformed by actions, you write
pure functions called reducers, which are (state, action)
=> newState.

Redux Data Flow

Redux : Store

A Redux store contains the current state value.

Stores are created using the createStore method.

Stores have three main methods: dispatch,

getState, and subscribe. All subscription callbacks

are invoked at the end of every call to dispatch.

Redux : Actions / Action Creators

 Actions are payloads of information that send data

from your application to your store. An action is a

plain JS object.

 Action creator is a function that create action. The

use of action creators leads to cleaner code and

better resuability.

Redux : Reducers

All state update logic lives in functions called reducers.

Since they’re just functions, smaller functions can be

composed together into larger functions.

Reducers are functions like : (state, action) =>
newState.

Reducers should be pure functions, with no side
effects.

Reducers need to update data/state immutably.

Why Redux?

 Centralized state handling

 Predictable state updates

 An Easy way to share data in different component

without pass all data as props down from top-level

components

 Hot Module Replacement etc.

Using Redux with React

PRACTICES

Code Quality/Style Check

Eslint

Stylelint

SonarQube：SonarJS

Dev Tools : react-addons-perf

Dev Tools : redux-devtools

redux-devtools-log-monitor

redux-devtools-dock-monitor

Dev Tools : redux-devtools

Test React Components

 Test Framework: Mocha

 Use react test utils addons to test

component (Virtual DOM or DOM)

 Enzyme provide Jquery-Like api.

Test React Components

Redux: Reducing Boilerplate

 Generating Action Creators

• utility libraries: redux-act, redux-actions

• simple utility function:

Redux: Reducing Boilerplate

Generating Reducers

Redux: Reducing Boilerplate

Generating Reducers

Improving React and Redux Perf
with Reselect

Improving React and Redux Perf
with Reselect

Selectors can compute derived data, allowing

Redux to store the minimal possible state.

Selectors are efficient. A selector is not recomputed

unless one of its arguments change.

Selectors are composable. They can be used as

input to other selectors.

Webpack : Code Splitting with react-
router

Entry Points: Manually split code using entry

configuration.

Prevent Duplication: Use the CommonsChunkPlugin

to dedupe and split chunks.

Dynamic Imports: Split code via inline function calls

within modules.

Webpack : Code Splitting - Dynamic
Imports

Webpack : Code Splitting - Prevent
Duplication

Webpack : Code Splitting - Bundle
Analysis

webpack-bundle-analyzer

Webpack : Code Splitting - Bundle
Analysis

 Import Module from Root - In JS

 npm install babel-plugin-root-import --save-dev

 Import Module from Root - In JS

 in .babelrc file

 Import Module from Root - In CSS

 i18n

Generate language resource (JSON) before
webpack build.
•use glob to find source files path (eg. './app/**/en-US.json’)

 Use utility function get text.

 Other library: react-intl

Summary : Why React ?

• Component-based

• Flexible (only V in MV*)

• Uni-direction data flow

• Efficient (virtual-dom)

• Ecosystem

Summary : Why Redux ?

• Centralized state handling

• Predictable state update

• Share data in components.

Q&A

Thank you 

