
© Hitachi, Ltd. 2018. All rights reserved.

Experience in SPDK Contribution –

SPDK iSCSI Resource Management and

JSON Configuration File

Hitachi, Ltd.

Scale-out Products Development Department,
IT Platform Products Management Division

03/23/2018

Shuhei Matsumoto



© Hitachi, Ltd. 2018. All rights reserved.

1. iSCSI Resource Management

2. JSON Configuration File

3. Experience in SPDK Contribution

Contents

1



2© Hitachi, Ltd. 2018. All rights reserved.

1. iSCSI Resource Management



3© Hitachi, Ltd. 2018. All rights reserved.

1-1  Improvement of iSCSI Resource Management
– Motivation and Goal

• iSCSI is still very important protocol for our business and product.

• SPDK iSCSI had a few issues:

• Compliance of implementation to iSCSI specification was not so clear.

• When using a new iSCSI target, all information must have been specified at 
its creation and could not be changed without removing it.

• iSCSI is one of the oldest libraries in SPDK. Design and implementation of 
other libraries were more sophisticated. iSCSI had much room to improve.

Motivation

Goal
• Check SPDK iSCSI implementation by referring iSCSI specification and figure 

out how SPDK iSCSI should be.

• Support dynamic reconfiguration of iSCSI resource.

• Refactor implementation of SPDK iSCSI.



4© Hitachi, Ltd. 2018. All rights reserved.

1-2  Background Knowledge – iSCSI Specification

• iSCSI is a SCSI transport protocol that operates between the TCP/IP and the 
SCSI protocol layer.

iSCSI Protocol

SCSI Protocol Layer

iSCSI Transport

TCP

IP

Ethernet

• Each host have one or more iSCSI nodes, which is initiator or target.

• Each iSCSI node has one or more network portals for connectivity.

• Accessibility control of an iSCSI node to network portals is implemented.

iSCSI Node and Network Portal

iSCSI 
Node 1

…

Network 
Portal 1

iSCSI
Node 2

iSCSI
Node n

Network 
Portal 2

Network 
Portal m

…

iSCSI Host



5© Hitachi, Ltd. 2018. All rights reserved.

1-2  Background Knowledge – iSCSI Specification

• An iSCSI session is the group of TCP connections that link an initiator node with 
a target node (equivalent to a SCSI I_T nexus).

• An iSCSI session may have one or more TCP connections (MC/S).

Session and Connectivity

iSCSI Initiator Node

iSCSI Session

NP iSCSI Target Node

iSCSI Session

NP

NP NP

NP NP

・
・
・

・
・
・

iSCSI Host iSCSI Host



6© Hitachi, Ltd. 2018. All rights reserved.

1-2  Background Knowledge – iSCSI Specification

• iSCSI supports MC/S. MC/S can span over multiple network portals.

• These network portals can be grouped together into a PG.

• Each network portal belongs to exactly one PG within a node.

• PGs are identified by a PG tag, which is unique within a node.

Portal Groups (PG)

Network Portal 1

Network Portal 2

Network Portal 3

Portal Group Tag 1

Portal Group Tag 2

Portal Group Tag 1

Node

Node



7© Hitachi, Ltd. 2018. All rights reserved.

1-3  iSCSI Target Topology Compliant with iSCSI Specification

• When allocating a network portal to a target node, create a PG in the target node 
first and then add the network portal to the PG.

• Accessibility control is done per session, i.e. per PG.

• PG is necessary for MC/S. But SPDK iSCSI doesn’t support MC/S

• When MC/S is not used, PG may not be meaningful concept.

PG 1 TGT 1

ACL

NP 1 PG 1

ACL

PG 1

ACL

TGT 2

TGT 3

NP 2 PG 1

ACL

TGT 4

NP: Network Portal
ACL: Access Control List
PG: Portal Group
TGT: Target Node



8© Hitachi, Ltd. 2018. All rights reserved.

1-4  iSCSI Target Topology in SPDK

• The PG tag is globally unique in a host and is used as follows:

• When creating each network portal, create a PG and then a PG-portal pair.

• Use PG tag as the index of the network portal.

• When allocating a network portal to a target node, specify the PG tag of the portal.

• Initiator group (IG) control accessibility. IG is based on the same idea as PG.

• The IG tag is globally unique in a host and is used as follows:

• When creating each target node, create an IG and then a IG-target pair.

• Use IG tag as the index of the target node.

• When using a target, specify the IG tag of the target node.

• When adding an initiator to a target node, the initiator is added to the IG of the target.

TGT 1

NP 1 PG 1 TGT 2

TGT 3

NP 2 PG 2 TGT 4

IG 1

IG 2

IG 3

IG 4



9© Hitachi, Ltd. 2018. All rights reserved.

1-5  Comparison of iSCSI Target Topology

• SPDK iSCSI target is simple and can be used easily. 

• Use PG and IG tag as indexes of portals and target nodes, respectively.

• SPDK iSCSI have been validated enough for single path configuration.

iSCSI Target Topology Compliant with Specification SPDK iSCSI Target Topology

TPG 1 TGT 1

ACL

NP 1 TPG 1

ACL

TPG 1

ACL

TGT 2

TGT 3

NP 2 TPG 1

ACL

TGT 4

TGT 1

NP 1 TPG 1 TGT 2

TGT 3

NP 2 TPG 2 TGT 4

IG 1

IG 2

IG 3

IG 4



10© Hitachi, Ltd. 2018. All rights reserved.

1-6  Dynamic Reconfiguration of SPDK iSCSI Target

• LUN can be added to the iSCSI target. (Unit attention is not supported yet.)

• IP address of the port of the iSCSI target can be changed dynamically.

• Accessibility to the new host can be added to the iSCSI target.

Now Components of iSCSI Target Can Be Changed Dynamically.

Target

Network Portal

Target Portal Group

LUN

Initiator Group



11© Hitachi, Ltd. 2018. All rights reserved.

2. JSON Configuration File



12© Hitachi, Ltd. 2018. All rights reserved.

2-1  Current SPDK Configuration Management

• SPDK provides two methods, .INI configuration file and JSON-RPC.

Method to Manage SPDK Configuration

• This is loaded and used at SPDK booting.

• This is used to initialize and configure SPDK subsystems.

.INI Configuration File

• This is used to configure and manage SPDK subsystems.

• This is used mainly through Python based command line tool.

JSON-RPC

.INI Config File JSON-RPC

SPDK

Dump

Load Manage



13© Hitachi, Ltd. 2018. All rights reserved.

2-2  Issue of Current SPDK Configuration Management

• Users use SPDK mainly by JSON-RPC and Python tool. Unification to JSON will 
be valuable for many.

Format Is Not Unified between API and Config File

• Exporting, editing, and importing config file at runtime are very usual operation.

• Current config file supports dump function but it is not easy to use.

Current Config File Is Not Easy to Export/Edit/Import

• Most operations can be done by JSON-RPC but initialization of subsystems can 
be done only by .INI config file.

Current JSON-RPC Cannot Control Initialization of Subsystems

• If metadata is persistent, the owner of it should be skipped at the next reboot.

Current Config File Is Not Aware of Persistent Metadata.



14© Hitachi, Ltd. 2018. All rights reserved.

2-3  Motivation to JSON Config File

1. Export the JSON config of the components you want to edit.

2. Edit the JSON config.

3. Import the JSON config.

Usual Operation Can Be Done by JSON Config File

• JSON-RPC can modify the attributes of the running components.

• JSON config file can be saved and used to be affected at the next reboot.

• Users will be able to get better flexibility by this combination.

JSON-RPC and Config File Can Be Used Depending on the Situation

• JSON config file is easy to verify before loading.

Verification of JSON Config File

• JSON config file will be helpful to deploy SPDK application easily.

Easy Deployment of SPDK Application Configuration



15© Hitachi, Ltd. 2018. All rights reserved.

2-4  High-Level Design of SPDK JSON Config File

• JSON config file is made of a sequence of JSON-RPC requests.

• Sequence of JSON-RPC requests is ordered by dependency.

Format of JSON Config File

• Add new JSON-RPCs to initialize SPDK subsystems. (Configuring SPDK 
subsystems can be done by existing JSON-RPCs.)

• Add new JSON-RPCs to dump configuration of SPDK subsystems. Dump is 
made of a sequence of JSON-RPCs to restore the configuration.

Addition of New JSON-RPCs

(Continued …)



16© Hitachi, Ltd. 2018. All rights reserved.

2-4  High-Level Design of SPDK JSON Config File (Continued)

• Add a command line option to disable auto-start of SPDK booting.

• When SPDK receives the option, it waits for JSON-RPCs to initialize and 
configure SPDK subsystems and then start SPDK application.

Disable Auto-Start of SPDK Booting

• Python client iterates JSON config file and sends JSON-RPCs synchronously 
and sequentially.

• Python client notifies the end of JSON config file by JSON-RPC.

• When SPDK receives the notification, SPDK starts the application.

Python Client Controls Progress of SPDK Booting



17© Hitachi, Ltd. 2018. All rights reserved.

2-5  Comparison of  the Approach to SPDK Boot Flow
– .INI Config File

Initialize SPDK Subsystem 1

Initialize SPDK Subsystem 2

Initialize SPDK Subsystem 3

Initialize SPDK Subsystem 4

Config Info

Config Info

• SPDK proceeds subsystem initialization actively by itself.

• SPDK knows dependency relationship among subsystems.

• Whether config info is loaded or not depends on each subsystem.

Start

Load

Load

No Config Info

No Config Info



18© Hitachi, Ltd. 2018. All rights reserved.

2-5  Comparison of the Approach to SPDK Boot Flow 
– JSON-RPC

Handle JSON-RPC

Handle JSON-RPC

Handle JSON-RPC

Handle JSON-RPC

JSON-RPC

JSON-RPC

JSON-RPC

• Many users operate SPDK through JSON-RPC.

• JSON-RPC is used mainly not directly but through Python client.

• Most operations can be done through JSON-RPC.

• JSON-RPC is synchronous and unidirectional (Python client -> SPDK).

• Sequence of JSON-RPCs proceeds passively for SPDK.

JSON-RPC



19© Hitachi, Ltd. 2018. All rights reserved.

2-5  Comparison of the Approach to SPDK Boot Flow 
– JSON Config File

Initialize SPDK Subsystem 1

Initialize SPDK Subsystem 2

Initialize SPDK Subsystem 3

Initialize SPDK Subsystem 4

JSON-RPC

JSON-RPC

JSON-RPC

• Subsystem initialization is done passively by JSON-RPC.

• Python client iterates JSON-RPCs one-by-one synchronously

JSON-RPC

Start

Config Info

Config Info

JSON Config File

• Single step execution or breakpoint function will be available. 



20© Hitachi, Ltd. 2018. All rights reserved.

2-6  Comparison of the SPDK Boot Flow – .INI Config File

Start SPDK

Initialize SPDK App Framework

Initialize RPC

Start SPDK App

Initialize and Configure SPDK Subsystem Change SPDK Subsystem

Load .INI Config

Load .INI Config

Get JSON-RPC

Initialize and Configure SPDK Subsystem

Load .INI Config

… …

Change SPDK Subsystem

Get JSON-RPC

• Initialization of SPDK App Framework needs .INI Config File. 

• JSON-RPC must be initialized after SPDK App Framework.

• JSON-RPC must start after completion of SPDK subsystem initialization to 
avoid corruption due to conflict between .INI config file and JSON-RPC.



21© Hitachi, Ltd. 2018. All rights reserved.

2-6  Comparison of the SPDK Boot Flow – JSON Config File

Start SPDK

Initialize SPDK App Framework

Initialize RPC

Initialize and Configure SPDK Subsystem

Get JSON-RPC

Get Params by Cmd Line

…

Start SPDK App

Change SPDK Subsystem

Get JSON-RPC

…

Change SPDK Subsystem

Get JSON-RPC

Initialize and Configure SPDK Subsystem

Get JSON-RPC

• Initialize JSON-RPC before starting SPDK subsystem initialization.

• Subsystem initialization proceeds by JSON-RPC driven.

• SPDK allows only JSON-RPCs for subsystem init before starting SPDK App.



22© Hitachi, Ltd. 2018. All rights reserved.

2-7  Dependencies of among Subsystems and Bdevs

SPDK Subsystems have dependencies among them.

• List of JSON-RPC requests in JSON config file is ordered by dependencies.

Bdevs have dependencies among them and persistent metadata.

• List of JSON-RPC requests in JSON config file is ordered by dependencies.

• Some bdevs have persistent metadata. Supplement information is provided to 
handle JSON config file appropriately. 

Subsystem A Subsystem B Subsystem C Subsystem D

Bdev 1 Bdev 2 Bdev 3 Bdev 4 Bdev 5 Bdev 6 Bdev 7 Bdev 8 Bdev 9



23© Hitachi, Ltd. 2018. All rights reserved.

3. Experience in SPDK Contribution



24© Hitachi, Ltd. 2018. All rights reserved.

3-1  Why I Can Do in the SPDK Community Now

• We wanted open source, user space implementation, and non-GPL iSCSI.

• We already started using SPDK.

• SPDK was clean and not monolithic library.

• SPDK might bring us to the latest technology.

Why SPDK was the first candidate in our team

• First I was not so positive for using SPDK.

• SPDK iSCSI was not matured yet and there were more matured ones.

• We had to customize SPDK iSCSI but we had not contributed any open 
source yet.

Why I Jumped into the SPDK Community

(Continued …)



25© Hitachi, Ltd. 2018. All rights reserved.

3-1  Why I Can Do in the SPDK Community Now (Continued)

• After consideration and discussion, I jumped into the SPDK community.

• SPDK looked innovative and exciting.

• I believed open source would be one of the ways to go for Hitachi.

• If I do this, it would be OK for us. This was what I had wanted to do.

Why I Jumped into the SPDK Community.

• SPDK community is very supportive and we have good relationship with them.

• I’m not smart enough but may have provided a little complementary capability to 
SPDK community.

• My contribution to SPDK community will be connected to us directly.

Why I Can Continue Contribution So Far.



26© Hitachi, Ltd. 2018. All rights reserved.

3-2  Our Challenge to SPDK

Spreading SPDK Internally is still a challenging task

• Asynchronous programming is very new for us.

• SPDK is counter-intuitive to our previous thought that multi-core and -queue 
are essential for performance. SPDK utilizes CPU core much efficiently.

• To utilize SPDK well, understanding SPDK well is necessary.

• Some may require that SPDK is included in the OS package.

• Way of thinking is different between open source community and our team.

Working in the SPDK community is good for us

• Our utilization of SPDK is going forward.

• We can work side-by-side with smart engineers and the latest technologies.

• My contribution is spreading among us slowly but steadily.

(Continued …)



27© Hitachi, Ltd. 2018. All rights reserved.

3-2  Our Challenge to SPDK (Continued)

Our decision of SPDK contribution is absolutely right.

• We will continue contribution to SPDK together with community.

• SPDK is still difficult but we will be able to use SPDK well like our software.

Let’s Join SPDK Community.

• We will not be able to use SPDK well alone.

• I hope SPDK will evolve as open source community and I believe it is 
valuable for every person, group, and organization that use SPDK.



© Hitachi, Ltd. 2018. All rights reserved.

Shuhei Matsumoto

03/23/2018

Hitachi, Ltd.

Scale-out Products Development Department,
IT Platform Products Management Division,

END

Experience in SPDK Contribution –
SPDK iSCSI Resource Management and 
JSON Configuration File 

28




