
Deployment and Management of Ceph
with Salt
(DeepSea)

Joshua Schmid
Software Engineer
SUSE Enterprise Storage

Agenda

I. Introducton

II. What’s Salt

III. What’s DeepSea

IV. How does it work

I. Preparaton

II. Validaton

III. Deployment

IV. Management

V. Features

Introducton

 Germany based

 Sofware Engineer at SUSE (5y)

 Full tme on Deployment and Management Framework (DeepSea)

Agenda

I. Introducton

II. What’s Deepsea

III. What’s Salt

IV. How does it work

I. Preparaton

II. Validaton

III. Deployment

IV. Management

V. Features

What’s DeepSea

Accumulaton of custom Python modules, Salt states and Salt orchestratons that enable you to deploy

and manage Ceph at scale.

 Started at SUSE

 Easy to confgure

 Highly scalable

 Customizable

 Simplify Management tasks

Agenda

I. Introducton

II. What’s DeepSea

III. What’s Salt

IV. How does it work

I. Preparaton

II. Validaton

III. Deployment

IV. Management

V. Features

What’s Salt

Salt is a Python-based open-source confguraton management sofware and remote executon engine. Supportng

the "Infrastructure as Code" approach to deployment and cloud management, it competes primarily with Puppet,

Chef, and Ansible.

 6 Years old

 Master – Minion architecture (concurrency)

 Based on ZeroMQ

 Highly scalable

 Extensible

Basic Assertons asks

 A cluster consists of nodes

 A node should have a/multiple role/s
 - OSD, MGR, MON, RGW, MDS, IGW, NFS-G, openATTIC, Client-roles

 A role has certain requirements & restrictions

 A node needs to be confgured (Deployment)

 Post deployment tasks (Management)

Agenda

I. Introducton

II. What’s Salt

III. What’s DeepSea

IV. How does it work

I. Preparaton

II. Validaton

III. Deployment

IV. Management

V. Features

How does Salt work?

Master advises Minions
regardless of their underlying
OS to execute commands.

‘disk.usage’ is a module.

A module can either be built-in or
self-provided

How does Salt work?

Control your
Infrastructure with Code?

if (salt ‘*’ disk.usage > 100G) {
 do_smth;
}

How does Salt work?

Lives in a so called Salt State File (SLS). Can be extended with Jinja.

States allow to customize and condense operations (e.g modules, functions)

salt ‘*’ state.apply your.state

How does Salt work?

“Lives in a so called Salt State File (SLS). Can be extended with Jinja.”

 Where do theses ‘values’ come from?

 How do we store data?

 How do we get information about the nodes?

How does Salt work?

Minions send data to Master

Dynamic information
about minions → Grains

Static and Custom information
about minions → Pillar Data

How does Salt work? - Recap

Recap:

We need to apply Roles to Nodes which need to meet certain requirements and want to be configured.

Grains provide information about a Node(Minion). This allows to check for certain Requirements and
Restrictions.

The Pillar provides information from the user.

Modules can be used to execute commands on the Node.

States described in SLS Files allow a consolidation of Modules, enabling us to logically group tasks that are
needed to deploy Ceph.

Targets can be defined to match certain hosts that are assigned to a certain role.

Agenda

I. Introducton

II. What’s Salt

III. What’s DeepSea

IV. How does it work

I. Preparaton

II. Validaton

III. Deployment

IV. Management

V. Features

Preparaton

You are in a Data-Center with 2500 Nodes. How do you identify each
machine and assign a role to it?

Preparaton

Short answer: The Pillar

In order to map minions to roles DeepSea uses a files called the policy.cfg

Role assignment
role-master/cluster/node1*.sls
role-admin/cluster/node1*.sls
role-igw/cluster/node2*.sls
role-mon/cluster/node[1,2,3]*.sls
role-mds/cluster/node[:-1]*.sls
role-mgr/cluster/node[1,2,3]*.sls

Or even

role-mon/cluster/mon*.sls re=.*1[135]\.subdomainX\.sls$

This allows to tag minions with specific roles. The files that are being matched also contain extra information about that minion like
it’s public IP address.

Preparaton

After the user applied the changes he made, pillar data can be verified by querying for it.

So we expect node1 to have the role-admin, role-master, role-mgr and role-mon

salt ‘node1*’ pillar.get roles

Will return a python structure that salt interprets and prints nicely.

node1:
 - roles:
 - mon
 ….

Preparaton

That also means that we abstracted one layer. We don’t have to do:

salt ‘node1’ state.apply our.custom.state

We are able to do:

salt -I roles:mon state.apply our.custom.state

That allows us to not think about hostnames anymore. → More scalable

Preparaton

Being able to target that way, we can call different commands in order to deploy Ceph.

‘salt -I roles:mon state.apply our.state.for.mon.validation’
‘salt -I roles:mon state.apply our.state.for.mon.configuring’
‘salt -I roles:mon state.apply our.state.for.mon.deployment’
‘salt -I roles:mon state.apply our.state.for….’

The same for every other Role?

That doesn’t scale...

Orchestratons

Like States allow to combine modules, Orchestrations allow grouping of States.

‘salt-run state.orch a.custom.orchestration‘

Has multiple States in it that do everything from
 Validation
 Configuration
 Deployment
 Maintenance

Orchestratons

Stage 0:
 - Pre-deployment, Patching, Syncing
Stage 1:
 - Gathering information about cluster
Stage 2:
 - Write to Pillar, Get user input, Configuration
Stage 3:
 - Deploy Ceph-core services
Stage 4:
 - Deploy Non-core services (mds, rgw, openATTIC)
Stage 5:
 - Remove unwanted roles from nodes

Orchestratons – Stage 0

‘salt-run state.orch ceph.stage.0‘

 Activate salt-api (for remote control, openATTIC uses it)
 Sync modules
 Apply updates

 → Call packagemanager.py (method configurable)
 → Calls either Apt or Zypper (depending on the grain)

 Conditional restarts

Features

Filestore → Bluestore migration
 - per OSD or per Node

Baseline benchmarking(pre-deployment)
 - for rbd, cephfs, baseline, blockdev, fs

Support for SLES, openSUSE, CentOS, Ubuntu(wip)
 - Contributions are welcome

Automated restarts after update or config change
 - Detecting via lsof and checksums

Non-disruptive updates and upgrades
 - Rolling updates that stop when a failure is detected

Demo

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

