

提展证券市门大方

携程酒店浏览客户流失概率预测

分享人:陈无忌

姓名:陈无忌

- 中国科学技术大学-计算机学院-研二
- 研究方向:大数据、车联网
- 携程云海两次大数据竞赛第一名
- 阿里天池大数据竞赛多次排名前1%
- 曾在科大讯飞实习-研究智慧城市

张随远:中国科学院

计算技术研究所

团队组成

秦宇君 中国科学院

计算技术研究所

陈无忌:中国科学技术大学

计算机学院

初赛排行榜

排名	团队	最终分数	提交次数	最后提交时间
1	我中了你的贱	0.094532	18	2016-08-31 23:45:19
2	TOBE1	0.086309	10	2016-08-31 00:12:31
3	打酱油的	0.085893	24	2016-08-31 22:50:39
4	doubi	0.080010	19	2016-08-31 03:59:46
5	海淀吴彦祖	0.079532	25	2016-08-31 20:23:51
6	caesar	0.079122	10	2016-08-31 01:51:27
7	ISI	0.079122	8	2016-08-31 00:56:00
8	AK47	0.079110	19	2016-08-31 02:45:03
9	NULL	0.078520	10	2016-08-31 01:02:14
10	三人行	0.078478	12	2016-08-31 19:42:31

- 1 问题分析
- 2 特征工程
- 3 模型原理及调参
- 4 模型融合
- 5 总结

- 1 问题分析
- 2 特征工程
- 3 模型原理及调参
- 4 模型融合
- 5 总结

问题分析-问题描述

深入了解用户画像及行为偏好,找到最优算法,挖掘少响用户流失的关键因素,从而更好地完善产品设计用户体验!

, , , , , , , , , , , , , , , , , , , ,	~ 大門
字段	
sampleid	
label	目标变量
d	访问日期
arrival	入住日期
iforderpv_24h	24小时内是否访问订单填写页
decision habit_user	决策习惯:以用户为单位观察决策习惯
historyvisit_7ordernum	近7天用户历史订单数
historyvisit_totalordernum	近1年用户历史订单数

问题分析-评价标准

问题优化目标:

- 第一步:先按prob从高到低排序
- 第二步:根据你的输出即n个概率值,将这些概率值分别作为阈值,依次计算precision和 recall,分别得到长度为n的precision数组和recall数组
- 第三步:在precision>=0.97的recall中,选取max(recall)

 $F1 = \frac{2 \times Recall \times Precise}{Recall + Precise}$

问题分析-数据概况-摘要

一个用户访问一条酒店产生的记录, 但是这个label跟用户相关

sampleid	样本id
label	目标变量
d	访问日期
arrival	入住日期
iforderpv_24h	24小时内是否访问订单填写页
decisionhabit_user	决策习惯:以用户为单位观察决策 习惯
historyvisit_7ordernum	近7天用户历史订单数
historyvisit_totalordernum	近1年用户历史订单数

订单本身特征

用户特征

问题分析-数据概况-摘要

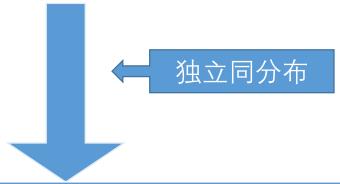
ordercanceledprecent	用户一年内取消订单率
landhalfhours	24小时内登陆时长
ordercanncelednum	用户一年内取消订单数
commentnums	当前酒店点评数
starprefer	星级偏好
novoters	当前酒店评分人数
consuming_capacity	消费能力指数

酒店特征

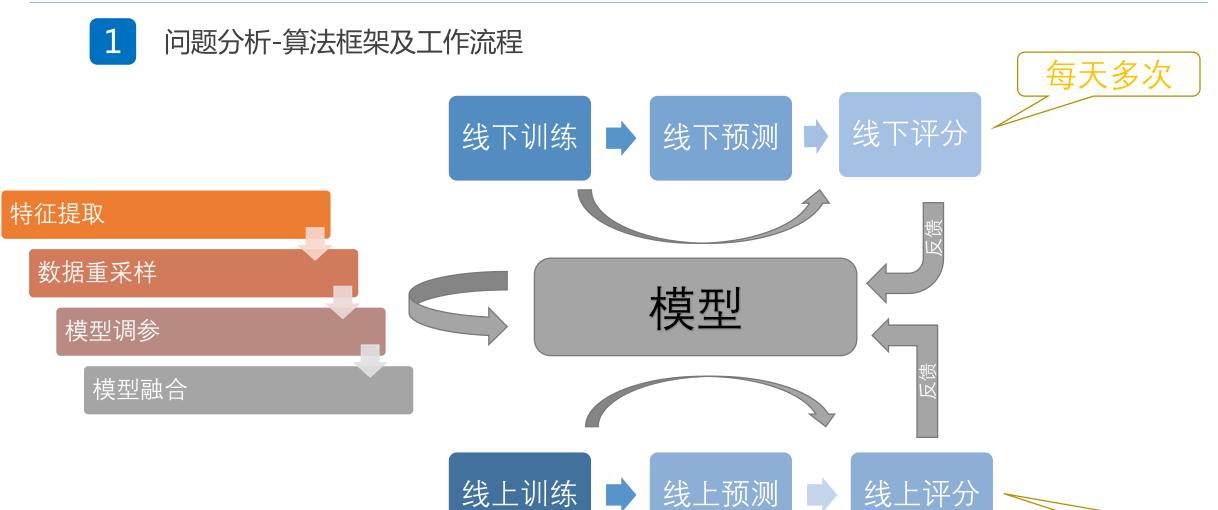
为保护客户隐私, 不提供uid等信息

问题分析-数据集划分

线上训练集	线上测试集
2016. 05. 15-2016. 05. 21期间一周的访问数据	2016.05.22-2016.05.28期间一周 的访问数据

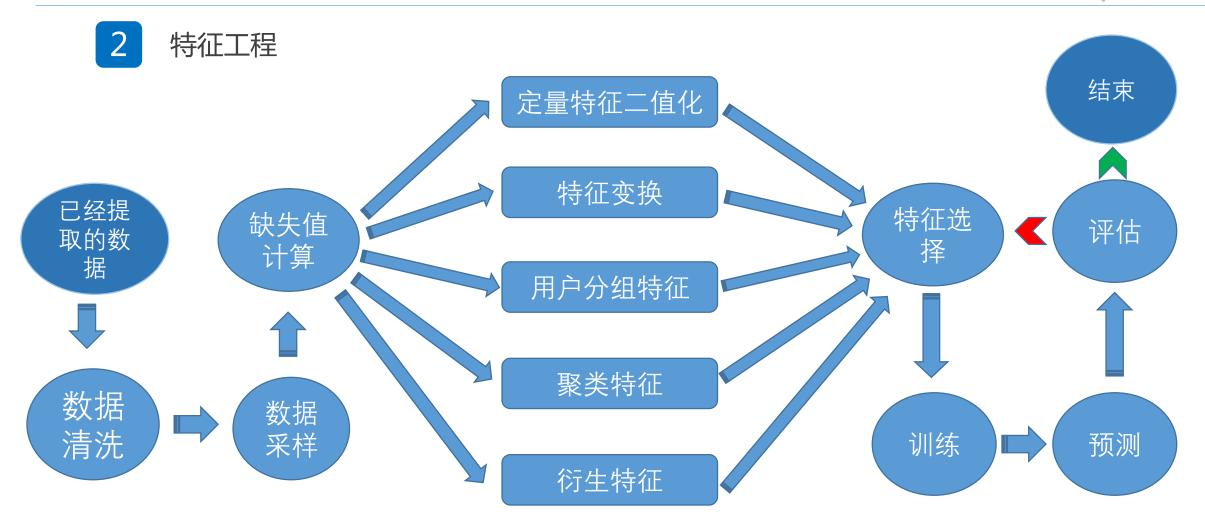


线下训练集	线下测试集
基于用户特征做数据集划分,2/3的数据作为本地训练数据	基于用户特征做数据集划分,2/3的数据作为本地训练数据



每天一次

- 1 问题分析
- 2 特征工程
- 3 模型原理及调参
- 4 模型融合
- 5 总结



特征工程-缺失值处理

					centurals, train					
0	24636	2016-05		2016-05		0	NULL	NULL	NULL	
1.04	NULL	22	NULL	1089	NULL	1933	NULL	NULL	1261	
NULL	NULL		102.607		NULL	1.03	NULL	49.0	NULL	
3.2	NULL	724	NULL	844.0	0.03	1335.0	1249	NULL	29.8	
46.0	58.027 NULL	74.956 12	615.0	NULL	0.29	12.88	3.147	NULL	NULL	7
1	24637	2016-05-	-18	2016-05	-18	0	NULL	NULL	NULL	
1.06	NULL	0	NULL	5612	NULL	6852	NULL	NULL	3205	
NULL	NULL	NULL	278.373	0.51	NULL	1.07	NULL	619.0	NULL	
4.9	NULL	5610	NULL	3789.0	0.21	5430.0	7829	NULL	-56.8	
111.0	249.347 NULL	224.92	513.0	NULL	0.53	17.933	4.913	NULL	NULL	33
0	24641	2016-05	-18	2016-05	-19	0	NULL	NULL	NULL	
1.05	NULL	3	NULL	256	NULL	367	NULL	NULL	194	
NULL	NULL	NULL	16.133	0.61	NULL	1.12	NULL	312.8	NULL	
3.9	NULL	4721	NULL	4341.0	0.52	5353.0	7324	NULL	8.0	
413.8	133.093 NULL	112.063 19	382.0	NULL	0.6	3.993	0.76	NULL	NULL	10
0	24642	2016-05-	-18	2016-05	-18	0	NULL	NULL	NULL	
1.01	NULL	2	NULL	NULL	NULL	NULL	NULL	NULL	3	
NULL	NULL	NULL	1.78	NULL	NULL	1.81	NULL	198.0	NULL	
2.1	NULL	41	NULL	529.0	0.53	1004.0	81	NULL	-7.0	
188.0	4.6 NULL	58.844 16	203.0	NULL	0.18	3.22	0.66	NULL	NULL	8
1	24644	2016-05	-18	2016-05	-19	0	NULL	NULL	NULL	
1.0	NULL	0	NULL	NULL	NULL	NULL	NULL	NULL	NULL	
NULL	NULL	NULL	0.073	NULL	NULL	1.03	NULL	NULL	NULL	
1.5	NULL	NULL	NULL	NULL	1.0	1.0	NULL	NULL	-5.0	
NULL	0.213 NULL	0.157 21	84.0	NULL	NULL	0.013	NULL	NULL	NULL	1

hoteluv 当前酒店历史uv businessrate_pre 24小时历史浏览次数最多酒店商务属性指数 cr_pre 24小时历史浏览次数最多酒店历史cr avgprice 平均价格 lowestprice 当前酒店可定最低价

特征工程-二值化与特征变换

二值化

one-hot编码

sklearnpreprocessing-OneHotEncoder

特征变换

多项式变换

Sklearnpreprocessing-PolynomialFeatures

特征工程-用户分组特征

用户特征

近7天用户历史订单数

近1年用户历史订单数

用户一年内取消订单率

用户一年内取消订单数

近3个月用户历史日均访问酒店数

消费能力指数

用户年订单数

• • • • • • • • • •

基于 用户特征 分组

组内特征提取

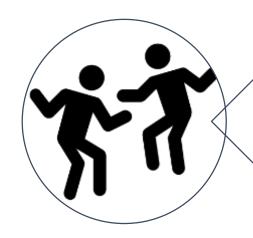
每个用户组对应特征的最大值 每个用户组对应特征的最小值

特征工程-用户分组特征-Example

样本id	用户近一 周订单数		用户评级	酒店均价
1	12	132	5	214
2	2	53	2	332
3	12	132	5	432
4	12	132	5	142

样本 id	用户近一周 订单数	用户近一年 订单数	用户 评级	酒店均 价	基于用户分组的 酒店均价(MAX)	
1	12	132	5	333	444	222
2	2	53	2	666	666	666
3	12	132	5	444	444	222
4	12	132	5	222	444	222

特征工程-聚类产生的特征



基于用户聚类

聚类属性

近7天用户历史订单数

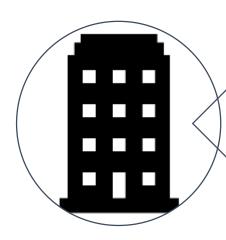
近1年用户历史订单数

用户一年内取消订单率

用户一年内取消订单数

近3个月用户历史日均访问酒店数

用户偏好价格-24小时浏览最多酒店价格



基于酒店聚类

聚类属性

当前酒店历史cr

当前酒店点评数

当前酒店评分人数

当前酒店历史取消率

当前酒店历史uv

特征工程-衍生特征

字段	解释
sampleid	样本id
d	访问日期
arrival	入住日期

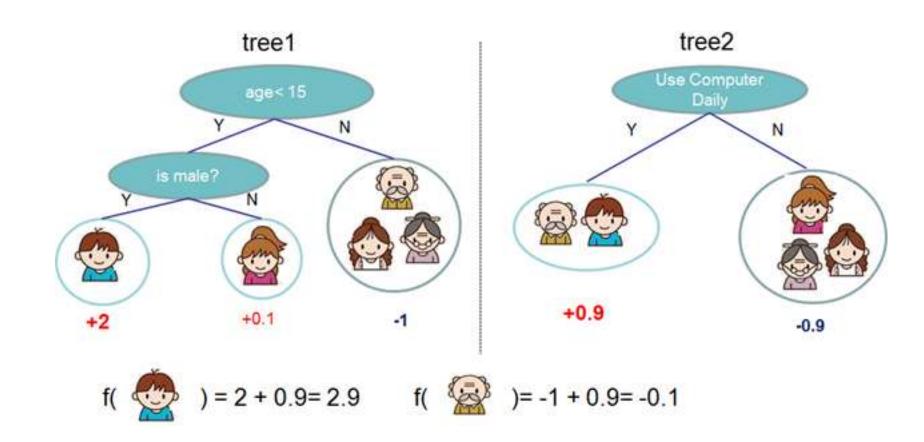
字段	解释
sampleid	样本id
intervals	访问日期和入住日期的差值
D_ifweekend	访问日期是否是周末
arrival_ifweekend	入住日期是否是周末

- 1 问题分析
- 2 特征工程
- 3 模型原理及调参
- 4 模型融合
- 5 总结

模型原理及调参-尝试的模型

模型	速度	效果	特点
Logistic Regression	快	一般	速度快,易于解释。特征空间大或缺失值过多的时候表现欠佳
Random Forest	一般	一般	采用bagging的思想对特征进行采样, 抗噪能力强
GBDT	一般	较好	采用boosting思想,对残差迭代,模型 拟合效果好
XGBoost ***	快	好	针对gbdt算法改进,增加二阶导及并 行化支持

模型原理及调参-gbdt原理

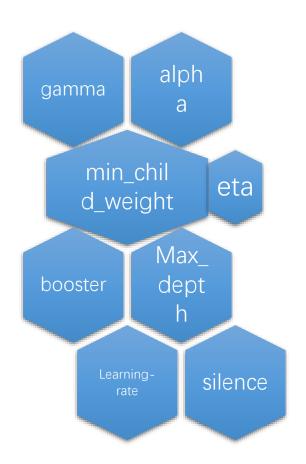


模型原理及调参-Xgboost原理

- $\exists \, \overline{k} \, Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$
- 用泰勒展开来近似我们原来的目标
 - 泰勒展开: $f(x + \Delta x) \simeq f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$
 - 定义: $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

模型原理及调参-Xgboost调参



再基于用户分组将训练集划分出 1/3数据作为验证集

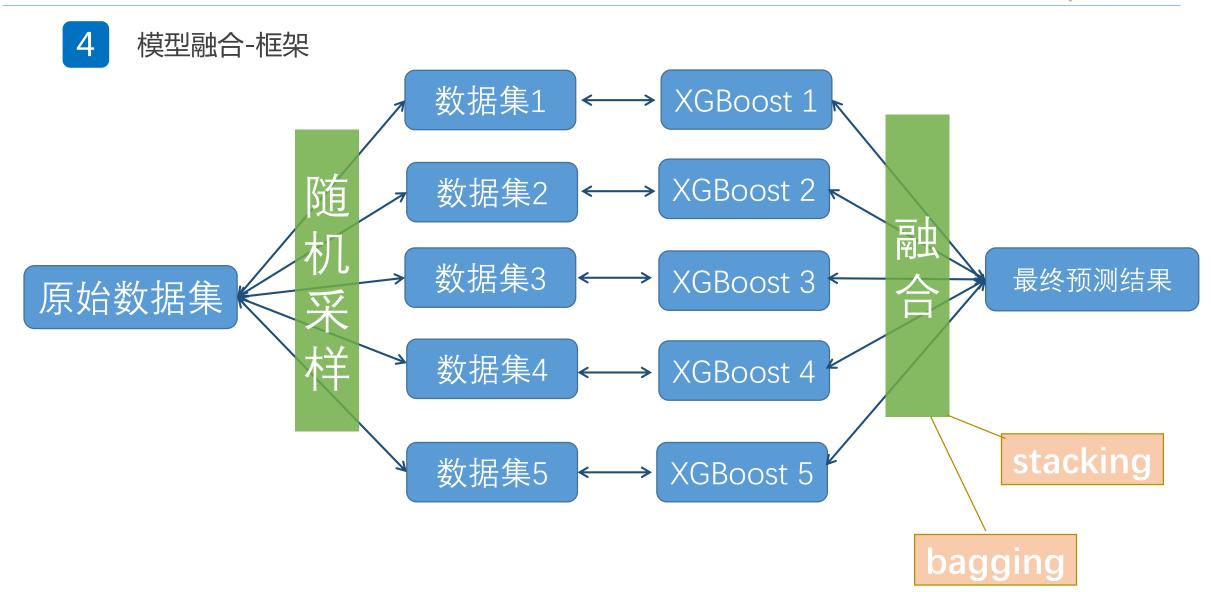
通过GridSearch的方法尝试 max_depth、learning_rate、 n_estimators三个参数值的组合

选出较优的几组参数做ensemble learning

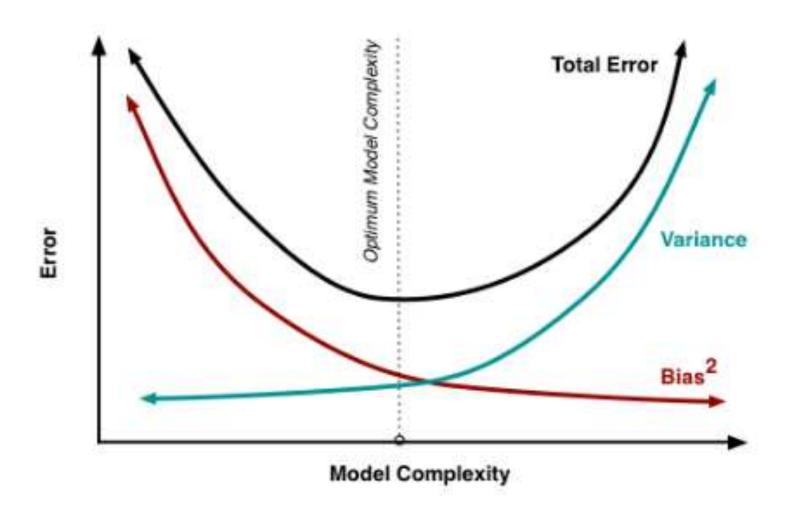
Tips:

- · 线下做gridSearch的时候, 不用太过于追求调参的效 果,适度即可。
- 因为做ensemble learning, 所以挑选最优参数组合的 时候尽量挑选参数差别大 的组合。
- 更多技巧参见: <u>Complete</u>
 <u>Guide to Parameter</u>
 <u>Tuning in XGBoost</u>

- 1 问题分析
- 2 特征工程
- 3 模型原理及调参
- 4 模型融合
- 5 总结



模型提升-提升的原理



- 1 问题分析
- 2 特征分析
- 3 模型原理及调参
- 4 模型提升
- 5 总结

总结-经验分析

数据分析及预处理是首要

• 不要上来就抽特征跑模型

特征很重要

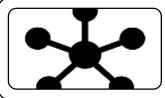
• 特征决定模型的上限

调参是精益求精

• 先调好特征最后调模型,尽量线下调参

别忘了关注评价标准

• 及时修改模型的loss



模型融合是杀手锏

• 模型融合勿急躁, 调好单模型是关键

携程技术中心

THANK YOU!

