

GlusterFS as a Backend For
File Service With Manila in
China Mobile

Liu Yuan, Senior Architect & StorageTeam lead

Jin Weiyi, Senior Software Engineer

Agenda

Cloud File Service

Manila

EFS System China Mobile

Shared file Services

The Short History of Cloud File Services

File Share Service Market Trends
• OpenStack Manila: June 2013
• Microsoft Azure Files: May 2014
• Amazon Web Services Elastic File Services: April 2015

Storage Serivces AWS Azure Openstack

Object Storage S3 Blob & Table Storage Swift

Archival(cold) Storage Glacier Azure Backup ?

Block Storage EBS Block Blob Storage Cinder

Share File Storage EFS Azure Files Manila

Amazon EFS 阿里云文件存储 BC-NFS + Manila

发布时间 2015年4月(Preview)
2016年6月(Pro. Ready)

2016年3月
2017年5月发布NAS Plus

2015年10月(Liberty)
持续开发中

数据可靠性 多个Zone(EBS单个Zone) 99.99999999% 依赖后端存储

服务稳定性 SLA 99.9%（SLA） 依赖后端存储

访问协议 NFS v4.1 NFS v3, NFS v4(不全面） Block,Ganesha(NFS),
GlusterFS, CephFS

弹性扩容支持 自动扩容、缩容（无限
制）

扩容(最大1PB) Manila支持，同时依赖
后端存储

容量|性能线性扩展 是, 支持1-1000s 实例并
发

是 (无具体并发数字) 依赖后端存储

网络访问模式 VPC VPC, 共享网络 VPC, 共享网络

本地数据中心访问 AWS Direct Connect 不支持 不支持

访问安全 VPC, 安全组，IAM授权，
IP

VPC, 安全组，RAM授权，
IP

VPC，安全组，IP

定价(月) 0.3 $ / GB (3x-10x EBS) 2元/GB (2x-5x 块存储) N/A

Cloud File Services Comparison

Amazon EFS 阿里云文件存储 BC-NFS + Manila

实测性能 多个EC2高度并

行数据访问保持
高IO性能
（110MB/s)

多个ECS并行访问
数据IO性能差
*(2MB/s)

多个EC2高度并

行数据访问保持
较高IO性能(100
MB/s)

性能模式 支持两种：一般
用途和最大IO

不区分 不区分

*阿里云17年5月发布云NAS Plus，性能得到极大提升

一般用途（General Purpose）：
 模式适用于大多数文件系统应用场景；
 在低并发访问模式下，提供较高的IO性能；

最大IO（Max I/O）：
 适用于高度并发访问需求的场景，如大数据分析等；
 在高并发访问模式下，提供很高的IOPS和吞吐量；

Why GlusterFS

方案 Generic Cinder Block GlusterFS CephFS

是否需要Service
Server

是 否 否

后端存储 Ceph RBD GlusterFS CephFS

访问协议 NFS/CIFS NFS/CIFS/POSIX CephFS

优点 简单，成熟，虚机无
需增加网卡链接存储
私有网络

简单，较成熟
有HA方案，支
持IP认证

?

缺点 需Service VM, 无HA
方案，性能差

需虚机增加网
卡同存储私有
网络链接

复杂，不
成熟,
Cephx认证

Manila: The OpenStack Shared File Service Program

Bringing self-service, shared file services to the cloud

 An Open, Standard API for

self-service management &

provisioning of shared file systems.

 Vendor neutral API for provisioning

and attaching filesystem-based

storage such as NFS, CIFS,

CephFS, HDFS and other network

filesystems.

Manila: Overview of Key Concepts

 Share (an instance of a shared filesystem)
–  User specifies size, access protocol, “share type”
–  Can be accessed concurrently by multiple instances

 Share access rules (ACL)
–  Defines which clients can access the share
–  Specified by IP in CIDR notation

 Share network
–  Defines the Neutron network & subnet through which
instances access the share
–  A share can be associated with a single share network

 Security service
–  Finer-grained client access rules for Authn/z (e.g. LDAP, Active
Directory, Kerberos)
–  Share can be associated to multiple security services

Manila: Overview of Key Concepts

 Snapshots
–  Read-only copy of share contents
–  New share can be created from a snapshot

Backend
–  Logical storage pool and provider of shares
–  a share resides on a single backend

Driver
–  Vendor or technology-specific implementation of backend API

Manila: Core Processes

manila-api
• Exposes REST API

through WSGI

Mania-scheduler
• Makes provisioning

decisions for share
requests

Manila-share
• Manager share

processes per backend
• Responsible for

communicating with
storage subsystems

Manila: Generic Share Driver

Creates a Nova instance to
offer NFS/CIFS shares
backed by Cinder volumes
–  New instance is created for
each ”share network”

–  Connected into existing
Neutron network & subnet

–  Instance flavor, source
Glance image, & SSH keypair
are configurable in
manila.conf

–  Manila creates shares in
instance using Linux
commands over SSH

Manila: Generic Share Driver

Pros:
– Manage both control path and data path.

– Take advantage of openstack core modules: nova, neutron and cinder.

Cons:
–  It is unstable, share servers have SPOF(Single Points Of Failure) problems.

–  Extra compute resources overhead.

– Compatibility issues with 3rd party neutron network plugin.

Generic share driver is a Reference Implementation driver, not applicable in
production.

Manila: GlusterFS Share Driver

Using GlusterFS as the storage back end for serving file shares to the
Shared File Systems clients.
Two driver types:
 GlusterFS Native driver

– Share layout only support GlusterFS volume.
– Instances use glusterfs protocol to access shares.
– Instances directly talk with the GlusterFS back end storage pool.
– Access to each share is allowed via TLS Certificates.

 GlusterFS driver
– Two share layouts implemented: GlusterFS volume & top-level

subdirectories.
– Both of NFS ganesha & Gluster NFS supported.
– Shares can be accessed by NFSv3 & v4 protocols.

Data path is not controlled by manila GlusterFS Share Driver

Manila: GlusterFS Share Driver

Why not GlusterFS Native driver?
 Only Glusterfs protocol access allowed

 Invasive operations to user client
• Embedding TLS Certificates
• Requirement of GlusterFS client application

 Out of band management of driver
• GlusterFS volumes are not created on demand
• Certificate setup (aka trust setup) between instance and storage backend

Manila: GlusterFS Share Driver

Manila: flaws with GlusterFS driver

GlusterFS driver is just a Demo Implementation!
 Uncompleted implementation

• NFS Ganesha portion is semi-finished
• Without HA NFS-Ganesha cluster features

 SPOF problems
• Control path between share driver and GlusterFS cluster may be disabled

by the failure of some GlusterFS server
• Share instance(s) may lose control by the failure of some backend

 Lack of consistency guarantees
• Share status in DB and backend may be different

Overview of EFS system

Manila is in contorl plane.
Control plane

• Provider self-service
shared file system
service

• Lifecycle of shared file
system is controlled
by its owner

Data plane
• Provider data path to

access shared file
system in storage pool

EFS system: control plane

EFS system: data plane

Basic requirements of data
plane:
 Identification

• NAS servers must get
identities(ip addresses)
from clients

Network reachability
• Make sure of network

layer reachability
between clients and
NAS servers

EFS system: GlusterFS driver refactor

A production-ready driver:
 NFS ganesha cluster support

• Guarantee export id
uniqueness

• Guarantee export status
consistency

 No SPOF problems
• Multiple control paths

between diver and
GlusterFS cluster

EFS system: GlusterFS driver refactor

Share instance self-monitor mechanism

EFS system: service continuity

Prerequisites: export status consistency in the scope of
ganesha cluster

EFS system: GlusterFS driver evolution

New component type named share agent:
 Transfer implementation layer from share drive to share agent
 Integration with storage subsystem
 AMQP-based system instead of SSH-based control path

EFS system: backend HA

Make sure all the shares are always under control:
 Backends status monitored by leader scheduler service
 Shares control migration within backend if failure occurrence

