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The Short History of Cloud File Services

File Share Service Market Trends
• OpenStack Manila: June 2013
• Microsoft Azure Files: May 2014
• Amazon Web Services Elastic File Services: April 2015

Storage Serivces AWS Azure Openstack

Object Storage S3 Blob & Table Storage Swift

Archival(cold) Storage Glacier Azure Backup ?

Block Storage EBS Block Blob Storage Cinder

Share File Storage EFS Azure Files Manila



Amazon EFS 阿里云文件存储 BC-NFS + Manila

发布时间 2015年4月(Preview)
2016年6月( Pro. Ready)

2016年3月
2017年5月发布NAS Plus

2015年10月(Liberty)
持续开发中

数据可靠性 多个Zone(EBS单个Zone) 99.99999999% 依赖后端存储

服务稳定性 SLA 99.9%（SLA） 依赖后端存储

访问协议 NFS v4.1 NFS v3, NFS v4(不全面） Block,Ganesha(NFS), 
GlusterFS, CephFS

弹性扩容支持 自动扩容、缩容（无限
制）

扩容(最大1PB) Manila支持，同时依赖
后端存储

容量|性能线性扩展 是, 支持1-1000s 实例并
发

是 (无具体并发数字) 依赖后端存储

网络访问模式 VPC VPC, 共享网络 VPC, 共享网络

本地数据中心访问 AWS Direct Connect 不支持 不支持

访问安全 VPC, 安全组，IAM授权，
IP

VPC, 安全组，RAM授权，
IP

VPC，安全组，IP

定价(月) 0.3 $ / GB (3x-10x EBS) 2元/GB (2x-5x 块存储) N/A

Cloud File Services Comparison



Amazon EFS 阿里云文件存储 BC-NFS + Manila

实测性能 多个EC2高度并

行数据访问保持
高IO性能
（110MB/s)

多个ECS并行访问
数据IO性能差
*(2MB/s)

多个EC2高度并

行数据访问保持
较高IO性能(100 
MB/s)

性能模式 支持两种：一般
用途和最大IO

不区分 不区分

*阿里云17年5月发布云NAS Plus，性能得到极大提升

一般用途（General Purpose）：
 模式适用于大多数文件系统应用场景；
 在低并发访问模式下，提供较高的IO性能；

最大IO（Max I/O）：
 适用于高度并发访问需求的场景，如大数据分析等；
 在高并发访问模式下，提供很高的IOPS和吞吐量；



Why GlusterFS

方案 Generic Cinder Block GlusterFS CephFS

是否需要Service
Server

是 否 否

后端存储 Ceph RBD GlusterFS CephFS

访问协议 NFS/CIFS NFS/CIFS/POSIX CephFS

优点 简单，成熟，虚机无
需增加网卡链接存储
私有网络

简单，较成熟
有HA方案，支
持IP认证

?

缺点 需Service VM, 无HA
方案，性能差

需虚机增加网
卡同存储私有
网络链接

复杂，不
成熟,
Cephx认证



Manila: The OpenStack Shared File Service Program

Bringing self-service, shared file services to the cloud

 An Open, Standard API for

self-service management &

provisioning of shared file systems. 

 Vendor neutral API for provisioning

and attaching filesystem-based

storage such as NFS, CIFS,

CephFS, HDFS and other network

filesystems.



Manila: Overview of Key Concepts 

 Share (an instance of a shared filesystem)
–  User specifies size, access protocol, “share type”
–  Can be accessed concurrently by multiple instances

 Share access rules (ACL)
–  Defines which clients can access the share
–  Specified by IP in CIDR notation

 Share network
–  Defines the Neutron network & subnet through which
instances access the share
–  A share can be associated with a single share network

 Security service
–  Finer-grained client access rules for Authn/z (e.g. LDAP, Active
Directory, Kerberos)
–  Share can be associated to multiple security services 



Manila: Overview of Key Concepts 

 Snapshots
–  Read-only copy of share contents
–  New share can be created from a snapshot

Backend
–  Logical storage pool and provider of shares
–  a share resides on a single backend

Driver
–  Vendor or technology-specific implementation of backend API 



Manila: Core Processes

manila-api
• Exposes REST API

through WSGI 

Mania-scheduler
• Makes provisioning 

decisions for share 
requests

Manila-share
• Manager share 

processes per backend
• Responsible for

communicating with
storage subsystems



Manila: Generic Share Driver

Creates a Nova instance to
offer NFS/CIFS shares 
backed by Cinder volumes
–  New instance is created for 
each ”share network”

–  Connected into existing 
Neutron network & subnet

–  Instance flavor, source 
Glance image, & SSH keypair
are configurable in 
manila.conf

–  Manila creates shares in 
instance using Linux 
commands over SSH



Manila: Generic Share Driver

Pros:
– Manage both control path and data path.

– Take advantage of openstack core modules: nova, neutron and cinder.

Cons:
–  It is unstable, share servers have SPOF(Single Points Of Failure) problems.

–  Extra compute resources overhead.

– Compatibility issues with 3rd party neutron network plugin.

Generic share driver is a Reference Implementation driver, not applicable in 
production.



Manila: GlusterFS Share Driver



Using GlusterFS as the storage back end for serving file shares to the 
Shared File Systems clients.
Two driver types:
 GlusterFS Native driver

– Share layout only support GlusterFS volume.
– Instances use glusterfs protocol to access shares.
– Instances directly talk with the GlusterFS back end storage pool.
– Access to each share is allowed via TLS Certificates.

 GlusterFS driver
– Two share layouts implemented: GlusterFS volume & top-level 

subdirectories.
– Both of NFS ganesha & Gluster NFS  supported.
– Shares can be accessed by NFSv3 & v4 protocols.

Data path is not controlled by manila GlusterFS Share Driver

Manila: GlusterFS Share Driver



Why not GlusterFS Native driver?
 Only Glusterfs protocol access allowed

 Invasive operations to user client
• Embedding TLS Certificates
• Requirement of GlusterFS client application

 Out of band management of driver
• GlusterFS volumes are not created on demand
• Certificate setup (aka trust setup) between instance and storage backend

Manila: GlusterFS Share Driver



Manila: flaws with GlusterFS driver

GlusterFS driver is just a Demo Implementation!
 Uncompleted implementation

• NFS Ganesha portion is semi-finished
• Without HA NFS-Ganesha cluster features

 SPOF problems
• Control path between share driver and GlusterFS cluster may be disabled 

by the failure of some GlusterFS server
• Share instance(s) may lose control by the failure of some backend

 Lack of consistency guarantees
• Share status in DB and backend may be different



Overview of EFS system

Manila is in contorl plane.
Control plane

• Provider self-service 
shared file system 
service

• Lifecycle of shared file 
system is controlled 
by its owner

Data plane
• Provider data path to 

access shared file 
system in storage pool



EFS system: control plane



EFS system: data plane

Basic requirements of data 
plane:
 Identification

• NAS servers must get 
identities(ip addresses) 
from clients

Network reachability
• Make sure of network 

layer reachability 
between clients and 
NAS servers 



EFS system: GlusterFS driver refactor  

A production-ready driver:
 NFS ganesha cluster support

• Guarantee  export id 
uniqueness 

• Guarantee export status 
consistency

 No SPOF problems
• Multiple control paths 

between diver and 
GlusterFS cluster



EFS system: GlusterFS driver refactor 

Share instance self-monitor mechanism



EFS system: service continuity

Prerequisites: export status consistency in the scope of 
ganesha cluster



EFS system: GlusterFS driver evolution

New component type named share agent:
 Transfer implementation layer from share drive to share agent
 Integration with storage subsystem
 AMQP-based system instead of SSH-based control path



EFS system: backend HA

Make sure all the shares are always under control:
 Backends status monitored by leader scheduler service
 Shares control migration within backend if failure occurrence




