

CHINA RUNS ON OPENSTACK

GlusterFS as a Backend For File Service With Manila in China Mobile

Liu Yuan, Senior Architect & StorageTeam lead Jin Weiyi, Senior Software Engineer

Agenda

Cloud File Service

Manila

EFS System in **China Mobile**

Shared file Services

of all storage sold is for file-based use cases

per IDC, 2012

The Short History of Cloud File Services

File Share Service Market Trends

OpenStack Manila: June 2013

Microsoft Azure Files: May 2014

Amazon Web Services Elastic File Services: April 2015

Storage Serivces	AWS	Azure	Openstack
Object Storage	S 3	Blob & Table Storage Swift	
Archival(cold) Storage	Glacier	Azure Backup	?
Block Storage	EBS	Block Blob Storage	Cinder
Share File Storage	EFS	Azure Files	Manila

Cloud File Services Comparison

	Amazon EFS	阿里云文件存储	BC-NFS + Manila
发布时间	2015年4月(Preview) 2016年6月(Pro. Ready)	2016年3月 2017年5月发布NAS Plus	2015 年 10 月(Liberty) 持续开发中
数据可靠性	多个Zone(EBS单个Zone)	99.9999999%	依赖后端存储
服务稳定性	SLA	99.9% (SLA)	依赖后端存储
访问协议	NFS v4.1	NFS v3, NFS v4(不全面)	Block,Ganesha(NFS), GlusterFS, CephFS
弹性扩容支持	自动扩容、缩容(无限制)	扩容(最大1PB)	Manila支持,同时依赖 后端存储
容量 性能线性扩展	是, 支持1-1000s 实例并 发	是 (无具体并发数字)	依赖后端存储
网络访问模式	VPC	VPC, 共享网络	VPC, 共享网络
本地数据中心访问	AWS Direct Connect	不支持	不支持
访问安全	VPC, 安全组,IAM授权,IP	VPC, 安全组,RAM授权,IP	VPC,安全组,IP
定价(月)	0.3 \$ / GB (3x-10x EBS)	2元/GB (2x-5x 块存储)	N/A

	Amazon EFS	阿里云文件存储	BC-NFS + Manila
实测性能	多个EC2高度并 行数据访问保持 高IO性能 (110MB/s)	多个ECS并行访问 数据IO性能差 *(2MB/s)	多个EC2高度并 行数据访问保持 较高IO性能(100 MB/s)
性能模式	支持两种:一般 用途和最大IO	不区分	不区分

一般用途(General Purpose):

- 模式适用于大多数文件系统应用场景;
- 在低并发访问模式下,提供较高的I0性能;

最大IO (Max I/O):

- 适用于高度并发访问需求的场景,如大数据分析等;
- 在高并发访问模式下,提供很高的IOPS和吞吐量;

*阿里云17年5月发布云NAS Plus,性能得到极大提升

Why GlusterFS

方案	Generic Cinder Block	GlusterFS	CephFS
是否需要Service Server	是	否	否
后端存储	Ceph RBD	GlusterFS	CephFS
访问协议	NFS/CIFS	NFS/CIFS/POSIX	CephFS
优点	简单,成熟,虚机无 需增加网卡链接存储 私有网络	简单,较成熟 有HA方案,支 持IP认证	?
缺点	需Service VM, 无HA 方案,性能差	需虚机增加网 卡同存储私有 网络链接	复杂,不 成熟, Cephx认证

Manila: The OpenStack Shared File Service Program

Bringing self-service, shared file services to the cloud

 An Open, Standard API for self-service management & provisioning of shared file systems.

Vendor neutral API for provisioning

and attaching filesystem-based storage such as NFS, CIFS,
CephFS, HDFS and other network filesystems.

Manila: Overview of Key Concepts

- ◆ Share (an instance of a shared filesystem)
 - User specifies size, access protocol, "share type"
 - Can be accessed concurrently by multiple instances
- ◆ Share access rules (ACL)
 - Defines which clients can access the share
 - Specified by IP in CIDR notation
- ◆ Share network
 - Defines the Neutron network & subnet through which instances access the share
 - A share can be associated with a single share network
- ◆ Security service
 - Finer-grained client access rules for Authn/z (e.g. LDAP, Active Directory, Kerberos)
 - Share can be associated to multiple security services

Manila: Overview of Key Concepts

- **♦** Snapshots
 - Read-only copy of share contents
 - New share can be created from a snapshot
- ◆ Backend
 - Logical storage pool and provider of shares
 - a share resides on a single backend
- ◆ Driver
 - Vendor or technology-specific implementation of backend API

Manila: Core Processes

- > manila-api
 - Exposes REST API through WSGI
- ➤ Mania-scheduler
 - Makes provisioning decisions for share requests
- ➤ Manila-share
 - Manager share processes per backend
 - Responsible for communicating with storage subsystems

Manila: Generic Share Driver

Creates a Nova instance to offer NFS/CIFS shares backed by Cinder volumes

New instance is created for each "share network"

Connected into existing
 Neutron network & subnet

Instance flavor, source
 Glance image, & SSH keypair
 are configurable in
 manila.conf

Manila creates shares in instance using Linux commands over SSH

Manila: Generic Share Driver

Pros:

- Manage both control path and data path.
- Take advantage of openstack core modules: nova, neutron and cinder.

Cons:

- It is unstable, share servers have SPOF(Single Points Of Failure) problems.
- Extra compute resources overhead.
- Compatibility issues with 3rd party neutron network plugin.

Generic share driver is a Reference Implementation driver, not applicable in production.

Manila: GlusterFS Share Driver

Manila: GlusterFS Share Driver

Using GlusterFS as the storage back end for serving file shares to the Shared File Systems clients.

Two driver types:

- GlusterFS Native driver
 - Share layout only support GlusterFS volume.
 - Instances use glusterfs protocol to access shares.
 - Instances directly talk with the GlusterFS back end storage pool.
 - Access to each share is allowed via TLS Certificates.

GlusterFS driver

- Two share layouts implemented: GlusterFS volume & top-level subdirectories.
 - Both of NFS ganesha & Gluster NFS supported.
 - Shares can be accessed by NFSv3 & v4 protocols.

Data path is not controlled by manila GlusterFS Share Driver

Manila: GlusterFS Share Driver

Why not GlusterFS Native driver?

- Only Glusterfs protocol access allowed
- Invasive operations to user client
 - Embedding TLS Certificates
 - Requirement of GlusterFS client application
- Out of band management of driver
 - GlusterFS volumes are not created on demand
 - Certificate setup (aka trust setup) between instance and storage backend

Manila: flaws with GlusterFS driver

GlusterFS driver is just a Demo Implementation!

- Uncompleted implementation
 - NFS Ganesha portion is semi-finished
 - Without HA NFS-Ganesha cluster features
- > SPOF problems
 - Control path between share driver and GlusterFS cluster may be disabled by the failure of some GlusterFS server
 - Share instance(s) may lose control by the failure of some backend
- ➤ Lack of consistency guarantees
 - Share status in DB and backend may be different

Overview of EFS system

Manila is in contorl plane.

- Control plane
 - Provider self-service shared file system service
 - Lifecycle of shared file system is controlled by its owner
- Data plane
 - Provider data path to access shared file system in storage pool

EFS system: control plane

EFS system: data plane

Basic requirements of data plane:

- > Identification
 - NAS servers must get identities(ip addresses) from clients
- ➤ Network reachability
 - Make sure of network layer reachability between clients and NAS servers

EFS system: GlusterFS driver refactor

A production-ready driver:

- > NFS ganesha cluster support
 - Guarantee export id uniqueness
 - Guarantee export status consistency
- ➤ No SPOF problems
 - Multiple control paths between diver and GlusterFS cluster

EFS system: GlusterFS driver refactor

Share instance self-monitor mechanism

EFS system: service continuity

Prerequisites: export status consistency in the scope of ganesha cluster

EFS system: GlusterFS driver evolution

New component type named share agent:

- > Transfer implementation layer from share drive to share agent
- Integration with storage subsystem
- AMQP-based system instead of SSH-based control path

EFS system: backend HA

Make sure all the shares are always under control:

- Backends status monitored by leader scheduler service
- Shares control migration within backend if failure occurrence

THANK YOU