
2017 Postgres大象会 PGConf.CN 2017

Recursive CTE in GPDB

嘉宾：苑海胜

公司：Pivotal Software Inc.

2017 Postgres大象会 PGConf.CN 2017

Who am I

苑海胜

Joined Pivotal at 10/2015

Staff software engineer

Team lead of query processing team

2017 Postgres大象会 PGConf.CN 2017

What is CTE?

Common Table Expression

A common table expression (CTE) can be thought of as a temporary result set that is

defined within the execution scope of a single SELECT, INSERT, UPDATE, DELETE, or

CREATE VIEW statement.

WITH cte AS (SELECT a, b FROM foo)

SELECT * FROM cte WHERE a > 0;

2017 Postgres大象会 PGConf.CN 2017

How does Postgres implement CTE?

WITH cte AS (SELECT a, b FROM foo)

SELECT * FROM cte as t1, cte as t2

WHERE t1.a = t2.b;

QUERY PLAN

--

Hash Join (cost=1.21..1.38 rows=5 width=16)

Hash Cond: (t1.a = t2.b)

CTE cte

-> Seq Scan on foo (cost=0.00..1.05 rows=5 width=8)

-> CTE Scan on cte t1 (cost=0.00..0.10 rows=5 width=8)

-> Hash (cost=0.10..0.10 rows=5 width=8)

-> CTE Scan on cte t2 (cost=0.00..0.10 rows=5 width=8)

(7 rows)

Init Plan (CTE Definition)

2017 Postgres大象会 PGConf.CN 2017

How does GPDB implement CTE?

WITH cte AS (SELECT a, b FROM foo)

SELECT * FROM cte as t1, cte as t2 WHERE t1.a = t2.b;

QUERY PLAN

Gather Motion 3:1 (slice2; segments: 3) (cost=0.16..0.44 rows=5 width=16)

-> Hash Join (cost=0.16..0.44 rows=2 width=16)

Hash Cond: share0_ref2.b = share0_ref1.a

-> Redistribute Motion 3:3 (slice1; segments: 3) (cost=0.00..0.20 rows=2)

Hash Key: share0_ref2.b

-> Shared Scan (share slice:id 1:0) (cost=2.10..2.31 rows=2 width=8)

-> Hash (cost=0.10..0.10 rows=2 width=8)

-> Shared Scan (share slice:id 2:0) (cost=2.10..2.31 rows=2 width=8)

-> Materialize (cost=2.05..2.10 rows=2 width=8)

-> Seq Scan on foo (cost=0.00..2.05 rows=2 width=8)

Settings: gp_cte_sharing=on; optimizer=off

2017 Postgres大象会 PGConf.CN 2017

What is the difference?

• Inlining CTE

GPDB always inline CTE where there is only 1 reference

E.g. Limit on CTE

• Predicate pushdown (Orca only)

σa=1(CTE) and σa=2(CTE) → σa=1 or a=2(CTE)

2017 Postgres大象会 PGConf.CN 2017

What is Recursive CTE?

• Recursive CTEs are special in the sense they are allowed to reference themselves!

• Recursive CTEs are really good at working with hierarchical data such as org charts for bill of materials.

WITH RECURSIVE subdepartment AS
(

SELECT * FROM department WHERE name = 'A'
UNION ALL
SELECT d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id

)
SELECT * FROM subdepartment;

Anchor Member (Query Definition)

Recursive Member (Query
Definition Referencing CTE)

Invocation (Statement using CTE)

2017 Postgres大象会 PGConf.CN 2017

How does Postgres implement recursive CTE?

WITH RECURSIVE t(n) AS (
SELECT 1

UNION ALL
SELECT n+1 FROM t WHERE n < 5

)
SELECT * FROM t;

QUERY PLAN

CTE Scan on t (cost=2.95..3.57 rows=31 width=4)

CTE t

-> Recursive Union (cost=0.00..2.95 rows=31 width=4)

-> Result (cost=0.00..0.01 rows=1 width=0)

-> WorkTable Scan on t (cost=0.00..0.23 rows=3 width=4)

Filter: (t.n < 5)

2017 Postgres大象会 PGConf.CN 2017

How does recursive CTE work?

WITH RECURSIVE t(n) AS (

SELECT 1

UNION ALL

SELECT n+1 FROM t WHERE n < 5

)

SELECT * FROM t;

Recursive Union

Result WorkTable Scan

1). RT = {1}, OUT = {1}

2). WT = RT = {1}, RT = {}

3). WT = {1}, RT = {2}, OUT = {1, 2}

4). WT = RT = {2}, RT = {}

5). WT = {2}, RT = {3}, OUT = {1, 2, 3}

6). WT = RT = {3}, RT = {}

7). WT = {3}, RT = {4}, OUT = {1, 2, 3, 4}

8). WT = RT = {4}, RT = {}

9). WT = {4}, RT = {5}, OUT = {1, 2, 3, 4, 5}

10). WT = RT = {5}, RT = {}

11). WT = {}, RT = {}, OUT = {1, 2, 3, 4, 5}

2017 Postgres大象会 PGConf.CN 2017

Another Recursive CTE Example

CREATE TABLE department (

id INT PRIMARY KEY,

parent_department INT REFERENCES department,

name TEXT

);

INSERT INTO department VALUES (0, NULL, 'ROOT');

INSERT INTO department VALUES (1, 0, 'A');

INSERT INTO department VALUES (2, 1, 'B');

INSERT INTO department VALUES (3, 2, 'C');

INSERT INTO department VALUES (4, 2, 'D');

INSERT INTO department VALUES (5, 0, 'E');

INSERT INTO department VALUES (6, 4, 'F');

INSERT INTO department VALUES (7, 4, 'G');

This will represent a tree structure of an organization:

ROOT ---> A ---> B ---> C ---> F

| |

| +----> D

|

+-----> E ---> G

2017 Postgres大象会 PGConf.CN 2017

Another Recursive CTE Example
WITH RECURSIVE subdepartment AS

(

-- non recursive term

SELECT name as root_name, * FROM department

WHERE name = 'A'

UNION ALL

-- recursive term

SELECT sd.root_name, d.* FROM department AS d,

subdepartment AS sd

WHERE d.parent_department = sd.id

)

SELECT * FROM subdepartment;

QUERY PLAN

--

CTE Scan on subdepartment

CTE subdepartment

-> Recursive Union

-> Seq Scan on department

Filter: (name = 'A'::text)

-> Hash Join

Hash Cond: (d.parent_department = sd.id)

-> Seq Scan on department d

-> Hash

-> WorkTable Scan on subdepartment sd

Recursive Union

Seq Scan HashJoin

WorkTable Scan

Hash Seq Scan

2017 Postgres大象会 PGConf.CN 2017

What is wrong in MPP environment?

Gather Motion 3:1 (slice2; segments: 3)

-> Recursive Union

-> Seq Scan on department

Filter: name = ’A’::text

-> Nested Loop

Join Filter: d.parent_department = sd.id

-> Seq Scan on department d

-> Materialize

-> Broadcast Motion 3:3 (slice1; segments: 3)

-> WorkTable Scan on subdepartment sd

1). Recursive Union operator is rescan

driven.

2). Recursive Union and WorkTable

Scan share tuple store.

3). Motion is not rescannable!

2017 Postgres大象会 PGConf.CN 2017

How to make it work in GPDB?

Don’t generate plan that has motion between WorkTableScan and RecursiveUnion.

1). Always gather on master

2). Always broadcast non-worktablescan side of join in recursive member.

Gather Motion 3:1 (slice2; segments: 3)

-> Recursive Union

-> Seq Scan on department

Filter: name = 'A'::text

-> Nested Loop

Join Filter: d.parent_department = sd.id

-> WorkTable Scan on subdepartment sd

-> Materialize

-> Broadcast Motion 3:3 (slice1; segments: 3)

-> Seq Scan on department d

2017 Postgres大象会 PGConf.CN 2017

Another problem

When do we put WorkTableScan on outer or inner side of Join?

2017 Postgres大象会 PGConf.CN 2017

WorkTableScan on outer side of Join

Gather Motion 3:1

-> Recursive Union

-> Seq Scan on department --- non-recursive part

Filter: name = 'A'::text

-> Hash Join --- recursive part

Hash Cond: sd.id = d.parent_department

-> WorkTable Scan on subdepartment sd

-> Hash

-> Broadcast Motion 3:3

-> Seq Scan on department d

hash table in Hash node will materialize the

broadcast motion.

for next recursion, just need to rescan WTS, no

need to rebuild hash table.

cost of building hash table on broadcast motion +

number of recursion * average cost of

WorkTableScan

2017 Postgres大象会 PGConf.CN 2017

WorkTableScan on inner side of Join

Gather Motion 3:1

-> Recursive Union

-> Seq Scan on department --- non-recursive part

Filter: name = 'A'::text

-> Hash Join --- recursive part

Hash Cond: sd.id = d.parent_department

-> Materialize

-> Broadcast Motion 3:3

-> Seq Scan on department d

-> Hash

WorkTable Scan on subdepartment sd

materialize the broadcast motion on the outer side.

rebuild hash table on WTS for every recursion.

cost of materializing broadcast motion + number of

recursion * (average cost of WorkTableScan +

average cost of building hash table on

WorkTableScan + cost of scanning materialize of

the motion)

2017 Postgres大象会 PGConf.CN 2017

Thanks!

