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Why performance matters?

What is performance?

How to improve it?

- Collect

- Represent

- Analyze



Why performance matters?
Answer: better user experience

• Not all activities matter. Requests impact users.
• Not all costs matter. Costs impact responses.
• The requests’ responding costs matter.

Bad: bottom-up strategies.
Approach?

1. Request-oriented distributed tracing.
2. Back-trace from response point.
3. Collect responding costs.



Why performance matters?
Collect responding costs.

Responding costs
• Motivation: Cover the request responding time.
• Consecutive: Single path, and no overlap with each other.
• Category: Execution costs in thread, or waiting costs between threads.

Represent performance of concurrent requests … ?



What is performance?
Answer: Latency and throughput

Bad: latency-only analysis, measure requests individually.
Approach?

1. Focus on performance of parallel requests.
2. New visualization for both throughput and latency of requests.

✓ ✗
✗ ✓

Understand
performance Latency Throughput



What is performance?
Represent both latency and throughput
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Better latency
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What is performance?
Represent performance of parallel requests

Responding costs: One-way, Consecutive, Flatten

More: Cluster behavior of 4M-Seq, iodepth=32  



What is performance? 
Represent bottleneck

Latencies are not necessarily dependent.
Throughputs are dependent.

• Lowest throughput 
• Worse: causes wait latencies; most of times, bottleneck

IN OUT
1000 requests/second 100 requests/second

Bottleneck:
100 requests/second

-> system throughput.



How to improve it?
Answer: identify bottleneck root causes

Root causes categories:
• Physical: configuration, deployment, hardware
• Logical: parameters, algorithm, architecture
• Other workload

Bad: do optimization subjectively and in blindness.
Approach?

1. Relate each cost with:
• Physical location: host, component, process(service), thread
• Logical location: code, workflow
• Runtime context: request, write length, offset …

2. Incremental analysis
• Controlled-variables
• Orthogonal methods
• Verification



How to improve it?
Incremental & interactive analysis

Refinements
• Filter
• Search
• Organize

Understand
• Overview
• Statistics
• Visualizations
• Factor impacts



Distributed-tracing: 

Visualization: 

Interactive frontend:

Motivation-aligned.

Straightforward
performance representation.

Be analysis-friendly.



An example
1. Distributed-tracing: RBD image write

Component Request Entity

RBD
ImageWriteRequest Images

ObjectRequest

Objects
RADOS

ObjectWriteOperationOSD

ObjectStore

Background: RBD image write data-path

Experiment: 3VMs, 4M-SEQ-Write, iodepth=16



An example
2.1. Visualize performance (ImageWriteRequests)

RBD::ImageWriteRequests

RBD::ObjectRequests

RADOS::ObjectWriteOperations

writex

omap operations
aiooperate

Queue operations
Object store



An example
3.1. Interactive Analysis

Physical location: costs by host Logical location: costs by workflow order

Filter by workflow step “j2” (osd enqueueop -> dequeueop)

OSD::do-op



An example
3.2. Root cause Analysis (do-op, 4M-SEQ)

Parameters:
- osd_op_num_shards
- osd_op_num_threads_per_shard
- pg_num

1 Shard

8 Shards

32 Shards



An example
Interactive analysis ...

• Lapse, host/thread count distribution
• Cost distribution by hosts, steps …
• Show longest, most-complex request
• Message heatmap between hosts
• Write balance
• RBD cache validity
• Combination with resource monitoring tools



Thank you!
Distributed-tracing
Visualization
Interactive frontend


