
Pinpoint Ceph bottleneck
out of cluster behavior mists

Cheng, Yingxin

Why performance matters?

What is performance?

How to improve it?

- Collect

- Represent

- Analyze

Why performance matters?
Answer: better user experience

• Not all activities matter. Requests impact users.
• Not all costs matter. Costs impact responses.
• The requests’ responding costs matter.

Bad: bottom-up strategies.
Approach?

1. Request-oriented distributed tracing.
2. Back-trace from response point.
3. Collect responding costs.

Why performance matters?
Collect responding costs.

Responding costs
• Motivation: Cover the request responding time.
• Consecutive: Single path, and no overlap with each other.
• Category: Execution costs in thread, or waiting costs between threads.

Represent performance of concurrent requests … ?

What is performance?
Answer: Latency and throughput

Bad: latency-only analysis, measure requests individually.
Approach?

1. Focus on performance of parallel requests.
2. New visualization for both throughput and latency of requests.

✓ ✗
✗ ✓

Understand
performance Latency Throughput

What is performance?
Represent both latency and throughput

start end

Throughput
(out)

Latency

Throughput
(in)

latency

Better throughput

Better latency

Better latency

Better throughput

What is performance?
Represent performance of parallel requests

Responding costs: One-way, Consecutive, Flatten

More: Cluster behavior of 4M-Seq, iodepth=32

What is performance?
Represent bottleneck

Latencies are not necessarily dependent.
Throughputs are dependent.

• Lowest throughput
• Worse: causes wait latencies; most of times, bottleneck

IN OUT
1000 requests/second 100 requests/second

Bottleneck:
100 requests/second

-> system throughput.

How to improve it?
Answer: identify bottleneck root causes

Root causes categories:
• Physical: configuration, deployment, hardware
• Logical: parameters, algorithm, architecture
• Other workload

Bad: do optimization subjectively and in blindness.
Approach?

1. Relate each cost with:
• Physical location: host, component, process(service), thread
• Logical location: code, workflow
• Runtime context: request, write length, offset …

2. Incremental analysis
• Controlled-variables
• Orthogonal methods
• Verification

How to improve it?
Incremental & interactive analysis

Refinements
• Filter
• Search
• Organize

Understand
• Overview
• Statistics
• Visualizations
• Factor impacts

Distributed-tracing:

Visualization:

Interactive frontend:

Motivation-aligned.

Straightforward
performance representation.

Be analysis-friendly.

An example
1. Distributed-tracing: RBD image write

Component Request Entity

RBD
ImageWriteRequest Images

ObjectRequest

Objects
RADOS

ObjectWriteOperationOSD

ObjectStore

Background: RBD image write data-path

Experiment: 3VMs, 4M-SEQ-Write, iodepth=16

An example
2.1. Visualize performance (ImageWriteRequests)

RBD::ImageWriteRequests

RBD::ObjectRequests

RADOS::ObjectWriteOperations

writex

omap operations
aiooperate

Queue operations
Object store

An example
3.1. Interactive Analysis

Physical location: costs by host Logical location: costs by workflow order

Filter by workflow step “j2” (osd enqueueop -> dequeueop)

OSD::do-op

An example
3.2. Root cause Analysis (do-op, 4M-SEQ)

Parameters:
- osd_op_num_shards
- osd_op_num_threads_per_shard
- pg_num

1 Shard

8 Shards

32 Shards

An example
Interactive analysis ...

• Lapse, host/thread count distribution
• Cost distribution by hosts, steps …
• Show longest, most-complex request
• Message heatmap between hosts
• Write balance
• RBD cache validity
• Combination with resource monitoring tools

Thank you!
Distributed-tracing
Visualization
Interactive frontend

