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Short Bio

‘BS & MS @ Nanjing University
*‘MS @ University of Washington
Intern @ Microsoft + Facebook

Fulltime @ Amazon + Twitter
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Machine Learning (ML) Infra Overview

Model Serving Challenges
—Performant
—Resilient & Robust
—Real-time
—Scalability

Deep Dive into Solutions
Model Serving Scenarios

Case Study
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ML Infra - Overview

ML is increasingly at the core of
everything we build at Twitter

* ML infra supports many product teams

— ads ranking, ads targeting, timeline ranking,
product safety, recommendation, moments

ranking, trends p
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ML Infra — Product Examples

eeeee AT&T LTE = 9:56 AM

While you were away.

Benedict Evans @BenedictEvans 2
h k ‘L, What's the right term for the web
N design trend where stuff randomly

appears, disappears and flies off the
page as you scroll down?
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G and taking entertainment to places
you’d never imagine.
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When Justin Bieber plays at
your pub

AMAZING

Man solves the Rubik's Cube in
less than 5 seconds
51 minutes ago
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Box Engineering and 3 others

Medium Engineering

‘ [ 8+
t @MediumEng ¢

We are the @Medium engineering team

Etsy Engineering
@codeascraft —

Facebook Open Source
@fbOpenSource an

At Facebook, we're keen users and
publishers of open software. We'll keep
you up-to-date with our new projects and
releases.

GitHub Engineering
g @GitHubEng oo
2 The official Twitter account of GitHub
Engineering. We build the world's largest
network of code.
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ML Infra - High-level Architecture

Data Inspection > DataRecord
v Core Infra
Feature Selection goeccscesscsecccccsccccressrcsonrcedorccosrsnassccoccnrcnscsnarocanscs )
Thrift Prediction - Command-line
. Training API .
Service Trainers
Tools . Prediction Engine ] M.etrlcs
: : Library
Lolly/VW Learner Decision Trees
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ML Infra — Data Record

* Unified data representation shared across teams

« Data format
—Support 4 dense, two sparse features
—Use hashed feature id instead of string name for
efficient serialization, storage and computation
—Data schema for feature id to name mapping
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ML Infra — Core Prediction Englne

Large scale generalized linear
learning with nonlinear feature
representations

Architecture
—Nonlinear transform: Minimum
description length (MDL), decision
trees, neural network
—Feature crossing
—Logistic regression: In-house JVM
learner

DataRecord
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Challenges
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Challenges - Performant

Trillions of predictions served daily
Thousands of features per example

Milliseconds latency per request
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Challenges — Resilient & Robust

 Traffic spike during events, etc. Super bowl, Oscar
award, world cup

« Traffic corruption due to upstream issue

 Machine failure
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Challenges — Real Time

o Twitter is all about real-time: news, events, trends,
hashtags.

* Advertising campaign targets real-time event
spanning short period of time

ML model dynamically adapts to changes spanning
as short as a few hours even minutes
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Challenges - Scalability

* Horizontal scaling to handle organic growth, new
features and advanced modeling

* Hundreds of millions of weights per model

« TBs of training data
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Solutions
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Solutions - Performant

* Reduce serialization cost
— Model collocation
— Batch request API
— Compressed request API
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Solutions - Performant

* Reduce computational cost
— Feature id instead of string name
— Transform sharing across models
— Feature cross done on the fly
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Solutions - Performant

Transform

Namespace
Grouping

1/1

Learner

[

Data
Transform Transform
:
Namespace Namespace
Grouping Grouping
v
Learner Learner

Merger
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Prediction

Multiple Model Flow with Topology Sharing
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Solutions - Resilient

 |Load factor to control the traffic at the
client side based on the success rate of

the requests

 QPS limiter to control the traffic at the
service side
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Solutions - Robust

* Snapshot models at fixed interval

« Abnormal detection based on traffic
pattern

e Controller to turn on / off the traffic
o
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Solutions - Real Time:
Online vs. Offline Learning

Learning Phase N Training Phase | Serving Phase =

Time Time

Data Stream Data Stream
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Online Learning Offline Learning




Solutions - Real time:
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Online Learning Architecture

Training Traffic

>

Training Traffic

)

Training Traffic
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Prediction Service Instance

| Client Read

Requests
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Solutions - Scaling:

Parameter Server

* Incremental model updates instead of
integrated training

| Client Read

Requests

Training >
Traffic Model Updates

‘Parameter Node’ )

‘Worker Node’

Model Updates

[ Model | [—roservpaares ) iodel |
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Parameter Group Serving Group e

AAV

Yy




Model Serving Scenarios

« Static model in-memory integration
« Static model standalone service

* Online learning service with integrated
training

« Scaling Online Learning with Parameter 4
server

Yy
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Scenarios: Service vs. Library

When Service is a good fit?

Easier to use / update / scale

Separate the heavy CPU / memory loads from the
client system

Leverage existing tools (etc loadtest, dashboard,
querying client) and batch compressed training

|

When Library might be a good fit?

,'; Small model with limited features W
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Scenarios:

Online vs. Offline Learning

* When online learning is a good fit?
— Capture the real-time info naturally
— Improve the prediction quality continuously
— Adapt to adversarial / competitive settings

* When offline learning is a good fit?

— Data is scarce with high acquisition cost
Y|

— Label is not immediately available
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Scenarios: Parameter Server

* Low serving efficiency due to high ratio of
training / prediction traffic

e High network usage due to training traffic fan-
out
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Case Study — Ads Prediction

User, Ads

‘ l Adshard

Online learning service with
integrated training

Read Requests P rediction
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Work In Progress

* Deep learning as feature transform

e Distributed training for scaling online learning
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Thank youl!
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