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ML Infra - Overview
• ML is increasingly at the core of 

everything we build at Twitter

• ML infra supports many product teams
– ads ranking, ads targeting, timeline ranking, 

product safety, recommendation, moments 
ranking, trends



ML	Infra	– Product	Examples
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ML Infra - High-level Architecture



ML Infra – Data Record
• Unified data representation shared across teams

• Data format 
–Support 4 dense, two sparse features
–Use hashed feature id instead of string name for 
efficient serialization, storage and computation 

–Data schema for feature id to name mapping



ML Infra – Core Prediction Engine

• Large scale generalized linear 
learning with nonlinear feature 
representations  

• Architecture
–Nonlinear transform: Minimum 
description length (MDL), decision 
trees, neural network

–Feature crossing
–Logistic regression: In-house JVM 
learner



Challenges



Challenges - Performant
• Trillions of predictions served daily

• Thousands of features per example 

• Milliseconds latency per request

• ...



Challenges – Resilient & Robust
• Traffic spike during events, etc. Super bowl, Oscar 

award, world cup 

• Traffic corruption due to upstream issue

• Machine failure 



Challenges – Real Time
• Twitter is all about real-time: news, events, trends, 

hashtags. 

• Advertising campaign targets real-time event 
spanning short period of time 

• ML model dynamically adapts to changes spanning 
as short as a few hours even minutes



Challenges - Scalability
• Horizontal scaling to handle organic growth, new 

features and advanced modeling 

• Hundreds of millions of weights per model

• TBs of training data 



Solutions



Solutions - Performant
• Reduce serialization cost

– Model collocation
– Batch request API
– Compressed request API



Solutions - Performant
• Reduce computational cost

– Feature id instead of string name
– Transform sharing across models
– Feature cross done on the fly



Solutions - Performant

Multiple	Model	Flow	with	Topology	Sharing



Solutions - Resilient
• Load factor to control the traffic at the 

client side based on the success rate of 
the requests

• QPS limiter to control the traffic at the 
service side



Solutions - Robust
• Snapshot models at fixed interval

• Abnormal detection based on traffic 
pattern

• Controller to turn on / off the traffic  



Solutions - Real Time: 
Online	vs.	Offline	Learning
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Solutions - Real time:
Online Learning Architecture 
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Solutions - Scaling:
Parameter Server 

• Incremental model updates instead of 
integrated training
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Model Serving Scenarios
• Static model in-memory integration

• Static model standalone service

• Online learning service with integrated 
training

• Scaling Online Learning with Parameter 
server 



Scenarios: Service vs. Library

When Service is a good fit?
• Easier to use / update / scale 
• Separate the heavy CPU / memory loads from the 

client system
• Leverage existing tools (etc loadtest, dashboard, 

querying client) and batch compressed training

When Library might be a good fit?
• Small model with limited features



Scenarios: 
Online	vs.	Offline	Learning	

• When online learning is a good fit?
– Capture	the	real-time	info	naturally	
– Improve	the	prediction	quality	continuously	
– Adapt	to	adversarial	/	competitive	settings	

• When offline learning is a good fit?
– Data	is	scarce	with	high	acquisition	cost
– Label	is	not	immediately	available	



Scenarios: Parameter Server
• Low	serving	efficiency	due	to	high	ratio	of	
training	/	prediction	traffic

• High	network	usage	due	to	training	traffic	fan-
out



Case	Study	– Ads	Prediction
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Work In Progress
• Deep	learning	as	feature	transform

• Distributed	training	for	scaling	online	learning

• ...



Thank	you!


