
Distributed SQL in TiDB
dongxu

������ ��

�
	���

About me

● Dongxu Huang, Cofounder & CTO @ PingCAP
● Geek / Engineer / Opensource enthusiast / Entrepreneur
● Go / Rust / Python / Clojure
● Build TiDB with <3

Rethinking SQL

● Data is growing at fast rate than ever before
○ The trending of AI / Data mining
○ Distributed systems become mainstream

● Traditional RDBMSs are no longer sufficient for many companies' needs
○ Scalability

● OLTP and OLAP are separate to each other
○ ETL is a pain in the ...

● But SQL never dies

OLAP + OLTP = HTAP

HTAP

Hybrid Transactional / Analytical Processing

● ACID Transaction
● Real-time analysis
● SQL

What’s TiDB

…...

TiDB

TiDB

Worker

Spark
Driver

TiKV Cluster (Storage)

Meta data

TiKV TiKV

TiKV

Application

Syncer

Data location

Job

TiSpark

DistSQL API

TiKV

TiDB

TSO/Data location

Worker

Worker

Spark Cluster

TiDB Cluster

TiDB

... ...
...

DistSQL API

PD PD

PD

PD Cluster

TiKV TiKV
TiDB

Overview

Overview

SQL AST Logical Plan Optimized
Logical Plan

Cost Model

Selected
Physical Plan

TiKV TiKV TiKV

TiDB SQL Layer

Statistics

Lexer / Parser
● Yacc

○ goyacc
○ golex

● 100% homemade
○ Why not use MySQL’s

yacc file?
○ Pros and Cons?

● Nothing fancy...

Optimizer
● Logical plan

○ Predicate pushdown
○ Column pruning
○ Constant folding
○ DNF -> CNF

● Physical plan
○ Index selection
○ Join re-order

Logical Plan Physical PlanOptimizer

Optimizer
● Predicate Pushdown
● Column Pruning
● Eager Aggregate
● Convert Subquery to Join
● Statistics framework
● CBO Framework

○ Index Selection
○ Join Operator Selection

■ Hash join
■ Index lookup join
■ Sort-merge join

○ Stream Operators VS Hash Operators

Eager Aggregation
● Eager Aggregation and Lazy Aggregation - VLDB Endowment
● Example:

SELECT MIN(s.c1) FROM s JOIN t ON s.c2 = t.c2

http://www.vldb.org/conf/1995/P345.PDF

min(s.c1)

TableScan(s) TableScan(t)

Join(s.c2 == t.c2)

TableScan(t)

SELECT MIN(s.c1) FROM s JOIN t ON s.c2 = t.c2

group by c2
min(s.c1) as c1

Join(s.c2 == t.c2)

TableScan(s)

min(c1)

Convert Subquery to Join
● Paper: Orthogonal Optimization of Subqueries and Aggregation (SIGMOD

2001)
● Most queries contain subquery could be converted to join
● Example：

SELECT * FROM depart as d1 WHERE 3 = (SELECT count(people) FROM depart
as d2 where d1.id = d2.id);

TableScan(d1) agg count(staff)

Apply(left outer join)

sel(d1.id = d2.id)

TableScan(d2)

TableScan(d1)

left outer join
(d1.id=d2.id)

TableScan(d2)

agg count(d2.staff)
group by d1.id

CBO Framework

or:

Imagine we got a logical plan:

its physical plan could be:

Cost estimation

Network cost Memory cost CPU cost

In TiDB, default memory factor is 5 and cpu factor is 0.8.
For example: Operator Sort(r), its cost would be:

● Access path selection in a relational database management system - 1979 IBM
● DP(Dynamic Programming) on tree based on statistic infomation

CBO Framework

Parallel Join
● Hash join

○ Fastest, joined tables are not very large, <= 50M rows, works with/without index.

● Sort merged join
○ Memory-free, must join on indexed column (or ordered data source)

● Index lookup join
○ must join on indexed column with high selectivity (filtered result set should be less than 10000

rows)

Small
Table

Big Table

Join
Worker

Join
Worker

Join
Worker

Hash Table

Output

tidb-server

Hash join

1

2

3Streaming

tikv

Sorted Table

Sorted Table

Join Worker Output

tidb-server

Sort-merge Join

Streaming

tikv

Streaming

Small
Table

Big Table Join Worker

Rows

Output

tidb-server

Index Lookup Join

2

3

Fecth data by Index

tikv

1

4

Statistics
● Equi-depth Histograms
● Max 256 Buckets
● NDV

○ Efficient and Scalable Statistics Gathering for Large Databases in Oracle 11g

● Full table analyze
○ Data sampling
○ Row && Index

● Incrementally analyze
● Distributed analyze (TODO)

○ Pushdown analyze jobs to TiKV coprocessor
○ Real-time analyze

Statistics

Table data
Reservoir sampling

Bucket 1 Bucket 2 Bucket 3 ... Bucket 256

buckets

Histogram Info (per column/index)

Row Count

Distinct Value Count

Buckets

Bucket

Count

Max

Min

Max Value Count

Executor
● Coprocessor TiDB and TiKV
● Task

○ Root Task
○ Coprocessor Task

Root Task

Coproces
sor task

Coproces
sor task

Coproces
sor task

Root Task

Coproces
sor task

Coproces
sor task

Coproces
sor task

Spark on TiKV

Spark ExecSpark Exec

Spark Driver

Spark Exec

TiKV TiKV TiKV TiKV

TiSpark

TiSpark TiSpark TiSpark

TiKV

Placement
Driver (PD)

gRPC

Distributed Storage Layer

gRPC

retrieve data location

retrieve real data from TiKV

Spark on TiKV

Region 1
PKID

[0-5000)

Region 2
PKID

[5000-10000)

Region 3
PKID

[10000-15000)

SELECT AVG(col2) FROM table1 WHERE col1 = ‘val1’ AND PKID >= 8000;

PKID >= 8000

col1 = ‘val1’

AVG(col2)

Key Range: [8000, INF)

COP: col EQ STR: ‘val1’

COP: SUM(col2) DIV COUNT(col2)

After Predicates and Aggregates processed, build coprocessor
request according to Region-Range mapping information and
prune regions contains no data

Intercept Spark SQL Logical Plan and inject
TiSpark logic.

Pushdown and rewrite Predicates and
Aggregation expressions for Coprocessor to
compute.

Coprocessor Request

Spark SQL
Logical Plan

Spark SQL
Extention API

Pluggable Storage Engine
● Standalone

○ goleveldb
○ boltdb
○ mem

● TiKV
● 3rd party

○ hbase
○ dashbase

SQL Optimizer

Executor

Storage Engine API

TiKV HBase Dashbase

Future works
● Code Generation
● MPP Engine
● Mixed storage engine (Columnar / Row-based)
● ...

Q&A

Thank You

