
—陪伴您的运维生涯



DevOps

Continuous Integration

Continuous Delivery



What is DevOps?

• DevOps team:



Continuous Integration

Commit Build

Pass

Fail Inspection Fix



Deploy Integration 
Tests

Manual
Tests

Presentation

Production

Continuous Delivery



Production Quality Images



Quick Start
“I never used Docker before, how to get 

started?”

Lookup for “onbuild” images.

It will easily get you started on building 

Docker images using only the source 

code.

Your first Dockerfile could have one line:



Quick Start
Building is super easy and can be very 

helpful to get started or to use during 

development

But once the image is built, its contents will 

have:

- All the building tools

- Extra software that might not be used

- Project’s code

Besides, the image size is also too big for 

one simple small project

How to solve this problem?



Builder Pattern
• Two separate Dockerfiles

• Dockerfile.build for compiling source

- Cache dependencies

- Install building tools or SDKs

• Dockerfile for production runtime:

- Only necessary software

• Using Alauda CI to build the project

• Lightweight images in production:

- Faster to push/pull

- Faster to deploy



Dockerfile optimization
• Concatenate system commands to avoid extra layers:

Instead of:
RUN apt-get update

RUN apt-get install curl –y

Use:
RUN apt-get update && apt-get install curl –y

• Cleanup what you don’t need installed:
Libraries and software used during build time, but not on run time

• Install any necessary debugging tools

• Never keep secrets inside the image



Dockerfile optimization
• Shared software among projects:

Create a base image:
FROM debian:jessie

RUN apt-get install curl nginx python mysql-driver –y

In your projects:

FROM index.alauda.cn/alauda/base:latest

• These changes will:

- Speed up building and deployment processes;

- Reduce the amount of storage used on a Private Registry;

- Simplify development and deployment;



Alauda’s Continuous Delivery



History

• At Alauda we experienced many different ways to deploy software 

setting different goals:

- Multiple hosts in a cluster – High availability;

- Zero-down time - Updates should be smooth;

- Reliable – Should work; 

- Easy – Anyone can deploy changes;

• We tried many different approaches:

- Scripting;

- Hacks;

- Ansible;



History
• At the beginning it worked, but, with several drawbacks:

• Deploy scripts constantly changing. A typo in the wrong place and it could 
easily break our production environment; So we also had to Test the 
solution to deploy software; 

• Solutions like Ansible are just too brute:
- Remove old version -> Deploy new version (possible down-time);

• Steep learning curve for beginners:
- Constant deployment stress;

• Not compatible with Microservices architecture;



History

Monolithic
Architecture

Ansible

Manual testing

Monolith
Container

Ansible +
Docker

Manual testing

Ansible +
Docker

Manual testing

Alauda

Automation +
Manual testing

Alauda
CI/CD

Unit tests +
Automation +

Manual testing

MicroservicesMicroservicesMicroservices

2x week
2 hours

1~2x week
1 hour

5x week
1 hour

10x week
30 minutes

20x week
10 minutes



Alauda’s Pipeline



Design

• Containerized:

- A traditional pipeline will deal with Artifacts, ready to deploy software;

- In a containerized environment Docker Images are the artifacts;

• Atomic:

- A pipeline is composed by different tasks;

- Multiple task types;

- Up to you on how to compose those tasks;

• Easily satisfy different needs and scenarios;

• From Development to Production;



Task Types



Deploy Application

• Deploys a temporary application using a template and updating the 

image of the selected services;

• Use-cases:

• Run Integration tests against a full application stack:

- Microservices architecture with multiple services;

- Test support using different types of backend storages;

- Run business focused tests over a controlled data set;

- Run calculations over a specific application structure;



Automated Tests
• Deploys a one-time task container on a cluster;

• Use-cases:

• Run automated test suites against a service/application:
- Integration tests;
- End-to-end tests;
- UI automated tests:

- Selenium;
- Robot framework;

• Run on-demand task for any kind of operation:
- Reports
- Backups, etc.



Update Service

• Updates an already running service;

• Keep consistent and running services with automatic rollback;

• Automatically reflect changes of a environment variables file to a 

service during update;

• Easily update a test/stage/production environment to speed-up 

delivery speed;



Manual Control

• Interrupts a pipeline for a limited amount of time and requires manual 

approval or interruption;

• Use-cases:

- Manual tests;

- Approval for release;

- Control time-sensitive releases;

- Time-buffer for assisted deployment;



Notifications
• Sends a notification with pipeline related data;

• Notifications support:
- Email;
- SMS messages;
- Webhooks;

• Use-cases:
- Notify team members regarding a specific phase of release;
- Automate remote command execution using webhooks;
- Alert oncall to assist deploy;



Case: Some Alliance
Challenges:
• Product’s life very complex:

- Manual packaging and deployment of software;
- Differences among environments leading to failure on Production;
- Too much time spent on deployment;

• Traditional IT system:
- Complex to deploy Testing environment;
- Complex maintenance of test data;
- Management of third-party software’s sandbox;

• Operational support for alliance’s members’ system:
- Responsible for development, maintenance and operation of multiple systems;
- Each system’s deployment is unique;
- Multiple services per system
- System’s service stack is not uniform;



Case: Some Alliance
Automatic Ops Dev/Test Management Cloud accounts Expandable Big Data

Project Management Development Team Test Team Application Ops Team

Development
Cluster Management

Testing
Cluster Management

Presentation
Cluster Management

Production
Cluster Management

Build 
Management

Pipeline/Testing
Management

Infrastructure management

Container
Orchestration

Distributed
Data



Case: Some Alliance
Solution:
• Use Alauda’s Pipeline:

- Define system’s services and third-party software deployment process;
- Automate deployment of software to the Test, Staging, and Production environments unifying and setting the 
software lifespan;
- Use application templates to unify services;
- Use different volumes to manage test data;
- Manage different cluster for each associated companies sharing the same images;

Customer Benefits:
• Standardize software deployment process:

- Automate deployment, rollback a tracing of software deployment and versions;
- Improved software publishing quality;

• Fast Test environment deploys:
- Test environments can be requested at any time by the associated companies or vendors;
- Test versions are specified and necessary test data is deployed automatically;
- Reduced immensely software testing cycles;

• Unified cluster management solution:
- Speedup monitoring, alarm and authorization for all different associated companies;
- Easily maintain and keep track of application version;



CI

Pipeline

Commit

Unit tests

Build

Dev Staging Production

Deploy App

Integration Tests

Deploy to Dev

Deploy to Staging

Automated UI

Manual Testing

Deploy to Prod

Smoke Test

Notify Team



Metrics-driven Development

• Continuous Tests:
- Continuously mimics user behavior on all environments of the 
pipeline
- Generates metrics that are constantly monitored
- Test team like dev/ops: 

- Write test code and update all environments;
- Monitor the quality of new versions through generated metrics;

- Product instrumented with all sorts of metrics:
- Triggered by user behavior tests
- Alerts triggered while the release is deployed throughout our 

clusters
- Easily detect bugs through metrics



Private Registry

Alauda CI/CD

Continuous DeliveryContinuous IntegrationPrivate Repository



Questions?




