Software

Quick Boot Optimization for Exterior
View System in Android

Bo Tong, Open Source Technology Center, Software and Services
Group (0TC/SSG)

NOTICE & DISCLATMER Lamms | [Tz

e Intel technologies’ features and benefits depend on system
configuration

and may require enabled hardware, software or service activation.
e Performance varies depending on system configuration.

e Intel, the Intel logo are trademarks of Intel Corporation in the U. S.
and/or other countries.

e *0Other names and brands may be claimed as the property of others.

Software

Agenda ﬁﬁﬁ% ‘ ’T EEETERY .;-:

» Tntroduction of Exterior View System (EVS)
- Why EVS is introduced
- EVS stack in Android

= EVS Boot Latency Analysis
- Boot sequence diagram

- Boot time evaluation

= Quick Boot Optimization

- Improved by 3 steps

- Conclusion and suggestion

Qenss | [T2miz

Introduction of Exterior
View System (EVS)

Why EVS is introduced (enns ‘ IT2X i

= SIMPLE: Support camera and view display with simplified design.

= FARLY: Intend to show display very early in the Android boot process.

= EXTENSIBLE: Enables advanced features to be implemented in user apps.

EVS stack in Android

= FVS application
- Native code started by init. rc

- Run in background when not in
use

= EVS Manager
- Wrapper between App and HAL

— Accept multiple concurrent
clients

= EVS HAL

- Depends on SurfaceFlinger

\enns | ITZmiz

Changfeng Allance 7 b

EVS Application
EvsEnumerator.hal

EvsCamera.hal | EvsDisplay.hal

EVS Manager

I EvsEnumerator.hal I
E;fdwam EvsCamera.hal | EvsDisplay.hal

module
Camera
Implementation | Implementation

Vehicle HAL
implementation
Kernel Camera Driver | Display Driver @

KEY { anproip | oem [5TeiUTYA DEPENDENCIES}

Software

Qenss | [T2miz

EVS Boot Latency
Analysis

Boot sequence diagram

= Communicate with the EVS Manager
and the Vehicle HAL

= An infinite loop monitoring
camera and gear/turn signal state
and reacting respectively

= Use the source image as an OpenGL
texture and render a complex
scene to the output buffer

Lanns | [Tzemizs

Changfeng Alliance

[325572 ol

Get Camera List

Ask Vehicle HAL

for notifications

Start Message
Loop

el w4 Choose rear camera

bl o Chose left camera

H

Right Turn Signal Al 4 Chose right camera

A

Start image stream

y

Stop image stream

Set display

Turn off display on next frame

i

Software

jEF
.
!
l
|
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
I
|
|
I
|
|
|
|
I
|
|
I
|
|
|
|
I
|
1
I
|
|
I
|
|
I
|
I
!
.
GIWrapper::renderimageToScre
|
|
|
|

Rt EEE

IT

'
|
T
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
'
(|iqbuf
T
|
»—
buf
1
I

[parameters]

74

Changfeng Alliance
uct EvsGIDi:
loo

98

'
|
T
I
|
|
|
|
I
|
|
I
|
I
|
|
I

-
|
|
|
|
I
|
|

"
I
|
I
|
I
|
|
I
|
|
I
|
I
|
T
I
|
1

» !
>, >
H —

gl

S »
>

T
T ————————————Streamstarted- ——————————— —

upC:

—

Display:

g

Target Buffer for GL Rendering

[;J‘

Open Ca

artst

reate Streamt

T

|

OpenDi

build shader

q
P
prepareG

-Construct RenderDirectViey

Ty

b L bt

[parameters]

-Construct State Contr

]
=4
©
=
=
[=]
N

. . .
Boot time evaluation (enns ‘ ITZXMi

= The application is expected to be
started by init as soon as EVS
manager and vehicle HAL are
available, targeted within 2.0
seconds of power on.

o ° ﬁﬁ;ﬁ .-'
Boot time evaluation (enns ‘ ITZX iz
Measured from Android first stage init

0.8s
0.1s 1.1s 0.2s 0.3s 0.3s 0.1s 0.1s
|IEVf prepareGL Start stream
ni

A 4

@0s @1.2s @2.2s

Qenss | [T2miz

Quick Boot Optimization

Improve by 3 steps (enns ‘ ITZ2XMi

= EVS App: Start Camera Stream with GL preparing concurrently

= FVS HAL: Display frames via composer service before SufaceFlinger is
ready

» Android Init: Start EVS related services/HALs earlier (on boot = on
early—init)

Step 1 inﬁﬁa& ‘ ’T EEETERY .'E.'i

EVS App: Start Camera Stream with GL preparing concurrently

A
0.8s
SurfaceFlinger
must be ready
0.3s before this
stage*
0.1s 1.1s 02s | 0.3s 01s 0.s
EVS
Init prepareGL
1 I 1
1 | |
1 1 |
1 I 1
] I ! .
@0s @1.2s @1.9s

Software

14

Step 2
EVS HAL: Display
ready

A

Nenna

Changfeng Alliance

IT25mi3?

EEETEFY l‘

frames via composer service before SufaceFlinger is

0.8s
0.3s
0.1s 1.1s 02s | 0.3s 0.1s

EVS

Init prepareGL
1 [} 1
1 I]
1 I I
1 I I
] I ! .

@0s @1.2s @1.8s

15

Software

Step 3 (enns | [Tzemips

Android Init: Start EVS related services/HALs earlier (on boot = on
early—init)

A
0.8s
0.3s
0.1s 0.4s 0.2s : 0.3s 0.1s
EVS
Init prepareGL
1 1 1
1 1 1
1 | I
1 I 1
1 I I -
@0s @0.5s @1.1s

Software

16

Conclusion (enns ‘ IT2XWi5

» The optimization can shorten EVS launch time to 1. Is (from Android
first stage init), and the total time is about 3.0s (including
bootloader and kernel time) on our hardware development board.

= [f we remove GL preparation and texture operations from EVS App, we
expect EVS launch time can fall down to 0.7s and the total is 2. 6s*.

Suggestion (anns ‘ IT2Xi=

= TODO: Multiple clients support in Composer Service
- Composer Service allows only one composer client currently*

- Bypass SurfaceFlinger to shorten the latency

- Solve the EVS HAL 1ib dependency (e.g. libgui is not VNDK 1lib
since P)

- The temporary solution is to create two composer clients for EVS
and SurfaceFlinger successively in Composer HAL, and the EVS HAL
should destroy EVS composer client and switch the EVS display to
SurfaceFlinger smoothly once it’ s ready.

Nerna A5

== Changfeng Alliance

S
O
ftw
a
re

